Step | Hyp | Ref
| Expression |
1 | | mplsubglem.u |
. . 3
⊢ (𝜑 → 𝑈 = {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}) |
2 | | ssrab2 3720 |
. . 3
⊢ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ⊆ 𝐵 |
3 | 1, 2 | syl6eqss 3688 |
. 2
⊢ (𝜑 → 𝑈 ⊆ 𝐵) |
4 | | mplsubglem.s |
. . . . 5
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
5 | | mplsubglem.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
6 | | mplsubglem.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Grp) |
7 | | mplsubglem.d |
. . . . 5
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin} |
8 | | mplsubglem.z |
. . . . 5
⊢ 0 =
(0g‘𝑅) |
9 | | mplsubglem.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑆) |
10 | 4, 5, 6, 7, 8, 9 | psr0cl 19442 |
. . . 4
⊢ (𝜑 → (𝐷 × { 0 }) ∈ 𝐵) |
11 | | eqid 2651 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
12 | 11, 8 | grpidcl 17497 |
. . . . . . . 8
⊢ (𝑅 ∈ Grp → 0 ∈
(Base‘𝑅)) |
13 | | fconst6g 6132 |
. . . . . . . 8
⊢ ( 0 ∈
(Base‘𝑅) →
(𝐷 × { 0 }):𝐷⟶(Base‘𝑅)) |
14 | 6, 12, 13 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (𝐷 × { 0 }):𝐷⟶(Base‘𝑅)) |
15 | | eldifi 3765 |
. . . . . . . . 9
⊢ (𝑢 ∈ (𝐷 ∖ ∅) → 𝑢 ∈ 𝐷) |
16 | | fvex 6239 |
. . . . . . . . . . 11
⊢
(0g‘𝑅) ∈ V |
17 | 8, 16 | eqeltri 2726 |
. . . . . . . . . 10
⊢ 0 ∈
V |
18 | 17 | fvconst2 6510 |
. . . . . . . . 9
⊢ (𝑢 ∈ 𝐷 → ((𝐷 × { 0 })‘𝑢) = 0 ) |
19 | 15, 18 | syl 17 |
. . . . . . . 8
⊢ (𝑢 ∈ (𝐷 ∖ ∅) → ((𝐷 × { 0 })‘𝑢) = 0 ) |
20 | 19 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐷 ∖ ∅)) → ((𝐷 × { 0 })‘𝑢) = 0 ) |
21 | 14, 20 | suppss 7370 |
. . . . . 6
⊢ (𝜑 → ((𝐷 × { 0 }) supp 0 ) ⊆
∅) |
22 | | ss0 4007 |
. . . . . 6
⊢ (((𝐷 × { 0 }) supp 0 ) ⊆ ∅ →
((𝐷 × { 0 }) supp 0 ) =
∅) |
23 | 21, 22 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝐷 × { 0 }) supp 0 ) =
∅) |
24 | | mplsubglem.0 |
. . . . 5
⊢ (𝜑 → ∅ ∈ 𝐴) |
25 | 23, 24 | eqeltrd 2730 |
. . . 4
⊢ (𝜑 → ((𝐷 × { 0 }) supp 0 ) ∈ 𝐴) |
26 | 1 | eleq2d 2716 |
. . . . 5
⊢ (𝜑 → ((𝐷 × { 0 }) ∈ 𝑈 ↔ (𝐷 × { 0 }) ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})) |
27 | | oveq1 6697 |
. . . . . . 7
⊢ (𝑔 = (𝐷 × { 0 }) → (𝑔 supp 0 ) = ((𝐷 × { 0 }) supp 0 )) |
28 | 27 | eleq1d 2715 |
. . . . . 6
⊢ (𝑔 = (𝐷 × { 0 }) → ((𝑔 supp 0 ) ∈ 𝐴 ↔ ((𝐷 × { 0 }) supp 0 ) ∈ 𝐴)) |
29 | 28 | elrab 3396 |
. . . . 5
⊢ ((𝐷 × { 0 }) ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ ((𝐷 × { 0 }) ∈ 𝐵 ∧ ((𝐷 × { 0 }) supp 0 ) ∈ 𝐴)) |
30 | 26, 29 | syl6bb 276 |
. . . 4
⊢ (𝜑 → ((𝐷 × { 0 }) ∈ 𝑈 ↔ ((𝐷 × { 0 }) ∈ 𝐵 ∧ ((𝐷 × { 0 }) supp 0 ) ∈ 𝐴))) |
31 | 10, 25, 30 | mpbir2and 977 |
. . 3
⊢ (𝜑 → (𝐷 × { 0 }) ∈ 𝑈) |
32 | | ne0i 3954 |
. . 3
⊢ ((𝐷 × { 0 }) ∈ 𝑈 → 𝑈 ≠ ∅) |
33 | 31, 32 | syl 17 |
. 2
⊢ (𝜑 → 𝑈 ≠ ∅) |
34 | | eqid 2651 |
. . . . . . 7
⊢
(+g‘𝑆) = (+g‘𝑆) |
35 | 6 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 𝑅 ∈ Grp) |
36 | 1 | eleq2d 2716 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑢 ∈ 𝑈 ↔ 𝑢 ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})) |
37 | | oveq1 6697 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑢 → (𝑔 supp 0 ) = (𝑢 supp 0 )) |
38 | 37 | eleq1d 2715 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑢 → ((𝑔 supp 0 ) ∈ 𝐴 ↔ (𝑢 supp 0 ) ∈ 𝐴)) |
39 | 38 | elrab 3396 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ (𝑢 ∈ 𝐵 ∧ (𝑢 supp 0 ) ∈ 𝐴)) |
40 | 36, 39 | syl6bb 276 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑢 ∈ 𝑈 ↔ (𝑢 ∈ 𝐵 ∧ (𝑢 supp 0 ) ∈ 𝐴))) |
41 | 40 | biimpa 500 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝑢 ∈ 𝐵 ∧ (𝑢 supp 0 ) ∈ 𝐴)) |
42 | 41 | simpld 474 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ∈ 𝐵) |
43 | 42 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 𝑢 ∈ 𝐵) |
44 | 1 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑈 = {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}) |
45 | 44 | eleq2d 2716 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝑣 ∈ 𝑈 ↔ 𝑣 ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})) |
46 | | oveq1 6697 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑣 → (𝑔 supp 0 ) = (𝑣 supp 0 )) |
47 | 46 | eleq1d 2715 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑣 → ((𝑔 supp 0 ) ∈ 𝐴 ↔ (𝑣 supp 0 ) ∈ 𝐴)) |
48 | 47 | elrab 3396 |
. . . . . . . . . 10
⊢ (𝑣 ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ (𝑣 ∈ 𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴)) |
49 | 45, 48 | syl6bb 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝑣 ∈ 𝑈 ↔ (𝑣 ∈ 𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴))) |
50 | 49 | biimpa 500 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → (𝑣 ∈ 𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴)) |
51 | 50 | simpld 474 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 𝑣 ∈ 𝐵) |
52 | 4, 9, 34, 35, 43, 51 | psraddcl 19431 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → (𝑢(+g‘𝑆)𝑣) ∈ 𝐵) |
53 | | ovexd 6720 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → ((𝑢(+g‘𝑆)𝑣) supp 0 ) ∈
V) |
54 | 41 | simprd 478 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝑢 supp 0 ) ∈ 𝐴) |
55 | 54 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → (𝑢 supp 0 ) ∈ 𝐴) |
56 | 50 | simprd 478 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → (𝑣 supp 0 ) ∈ 𝐴) |
57 | | mplsubglem.a |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∪ 𝑦) ∈ 𝐴) |
58 | 57 | ralrimivva 3000 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∪ 𝑦) ∈ 𝐴) |
59 | 58 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∪ 𝑦) ∈ 𝐴) |
60 | | uneq1 3793 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑢 supp 0 ) → (𝑥 ∪ 𝑦) = ((𝑢 supp 0 ) ∪ 𝑦)) |
61 | 60 | eleq1d 2715 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑢 supp 0 ) → ((𝑥 ∪ 𝑦) ∈ 𝐴 ↔ ((𝑢 supp 0 ) ∪ 𝑦) ∈ 𝐴)) |
62 | | uneq2 3794 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑣 supp 0 ) → ((𝑢 supp 0 ) ∪ 𝑦) = ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) |
63 | 62 | eleq1d 2715 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑣 supp 0 ) → (((𝑢 supp 0 ) ∪ 𝑦) ∈ 𝐴 ↔ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) ∈ 𝐴)) |
64 | 61, 63 | rspc2va 3354 |
. . . . . . . . 9
⊢ ((((𝑢 supp 0 ) ∈ 𝐴 ∧ (𝑣 supp 0 ) ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∪ 𝑦) ∈ 𝐴) → ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) ∈ 𝐴) |
65 | 55, 56, 59, 64 | syl21anc 1365 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) ∈ 𝐴) |
66 | | mplsubglem.y |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ∈ 𝐴) |
67 | 66 | expr 642 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴)) |
68 | 67 | alrimiv 1895 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴)) |
69 | 68 | ralrimiva 2995 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴)) |
70 | 69 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴)) |
71 | | sseq2 3660 |
. . . . . . . . . . 11
⊢ (𝑥 = ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → (𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) |
72 | 71 | imbi1d 330 |
. . . . . . . . . 10
⊢ (𝑥 = ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → ((𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴) ↔ (𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → 𝑦 ∈ 𝐴))) |
73 | 72 | albidv 1889 |
. . . . . . . . 9
⊢ (𝑥 = ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → (∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴) ↔ ∀𝑦(𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → 𝑦 ∈ 𝐴))) |
74 | 73 | rspcv 3336 |
. . . . . . . 8
⊢ (((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) ∈ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴) → ∀𝑦(𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → 𝑦 ∈ 𝐴))) |
75 | 65, 70, 74 | sylc 65 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → ∀𝑦(𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → 𝑦 ∈ 𝐴)) |
76 | 4, 11, 7, 9, 52 | psrelbas 19427 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → (𝑢(+g‘𝑆)𝑣):𝐷⟶(Base‘𝑅)) |
77 | | eqid 2651 |
. . . . . . . . . . . 12
⊢
(+g‘𝑅) = (+g‘𝑅) |
78 | 4, 9, 77, 34, 43, 51 | psradd 19430 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → (𝑢(+g‘𝑆)𝑣) = (𝑢 ∘𝑓
(+g‘𝑅)𝑣)) |
79 | 78 | fveq1d 6231 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → ((𝑢(+g‘𝑆)𝑣)‘𝑘) = ((𝑢 ∘𝑓
(+g‘𝑅)𝑣)‘𝑘)) |
80 | 79 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ((𝑢(+g‘𝑆)𝑣)‘𝑘) = ((𝑢 ∘𝑓
(+g‘𝑅)𝑣)‘𝑘)) |
81 | | eldifi 3765 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) → 𝑘 ∈ 𝐷) |
82 | 4, 11, 7, 9, 42 | psrelbas 19427 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢:𝐷⟶(Base‘𝑅)) |
83 | 82 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 𝑢:𝐷⟶(Base‘𝑅)) |
84 | 83 | ffnd 6084 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 𝑢 Fn 𝐷) |
85 | 4, 11, 7, 9, 51 | psrelbas 19427 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 𝑣:𝐷⟶(Base‘𝑅)) |
86 | 85 | ffnd 6084 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 𝑣 Fn 𝐷) |
87 | | ovex 6718 |
. . . . . . . . . . . . 13
⊢
(ℕ0 ↑𝑚 𝐼) ∈ V |
88 | 7, 87 | rabex2 4847 |
. . . . . . . . . . . 12
⊢ 𝐷 ∈ V |
89 | 88 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 𝐷 ∈ V) |
90 | | inidm 3855 |
. . . . . . . . . . 11
⊢ (𝐷 ∩ 𝐷) = 𝐷 |
91 | | eqidd 2652 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ 𝑘 ∈ 𝐷) → (𝑢‘𝑘) = (𝑢‘𝑘)) |
92 | | eqidd 2652 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ 𝑘 ∈ 𝐷) → (𝑣‘𝑘) = (𝑣‘𝑘)) |
93 | 84, 86, 89, 89, 90, 91, 92 | ofval 6948 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ 𝑘 ∈ 𝐷) → ((𝑢 ∘𝑓
(+g‘𝑅)𝑣)‘𝑘) = ((𝑢‘𝑘)(+g‘𝑅)(𝑣‘𝑘))) |
94 | 81, 93 | sylan2 490 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ((𝑢 ∘𝑓
(+g‘𝑅)𝑣)‘𝑘) = ((𝑢‘𝑘)(+g‘𝑅)(𝑣‘𝑘))) |
95 | | ssun1 3809 |
. . . . . . . . . . . . . 14
⊢ (𝑢 supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) |
96 | | sscon 3777 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) ⊆ (𝐷 ∖ (𝑢 supp 0 ))) |
97 | 95, 96 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) ⊆ (𝐷 ∖ (𝑢 supp 0 )) |
98 | 97 | sseli 3632 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) → 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 ))) |
99 | | ssid 3657 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 supp 0 ) ⊆ (𝑢 supp 0 ) |
100 | 99 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝑢 supp 0 ) ⊆ (𝑢 supp 0 )) |
101 | 88 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝐷 ∈ V) |
102 | 17 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 0 ∈ V) |
103 | 82, 100, 101, 102 | suppssr 7371 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 ))) → (𝑢‘𝑘) = 0 ) |
104 | 103 | adantlr 751 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 ))) → (𝑢‘𝑘) = 0 ) |
105 | 98, 104 | sylan2 490 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → (𝑢‘𝑘) = 0 ) |
106 | | ssun2 3810 |
. . . . . . . . . . . . . 14
⊢ (𝑣 supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) |
107 | | sscon 3777 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) ⊆ (𝐷 ∖ (𝑣 supp 0 ))) |
108 | 106, 107 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) ⊆ (𝐷 ∖ (𝑣 supp 0 )) |
109 | 108 | sseli 3632 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) → 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) |
110 | | ssid 3657 |
. . . . . . . . . . . . . 14
⊢ (𝑣 supp 0 ) ⊆ (𝑣 supp 0 ) |
111 | 110 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → (𝑣 supp 0 ) ⊆ (𝑣 supp 0 )) |
112 | 17 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 0 ∈ V) |
113 | 85, 111, 89, 112 | suppssr 7371 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑣‘𝑘) = 0 ) |
114 | 109, 113 | sylan2 490 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → (𝑣‘𝑘) = 0 ) |
115 | 105, 114 | oveq12d 6708 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ((𝑢‘𝑘)(+g‘𝑅)(𝑣‘𝑘)) = ( 0 (+g‘𝑅) 0 )) |
116 | 11, 77, 8 | grplid 17499 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Grp ∧ 0 ∈
(Base‘𝑅)) → (
0
(+g‘𝑅)
0 ) =
0
) |
117 | 12, 116 | mpdan 703 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Grp → ( 0
(+g‘𝑅)
0 ) =
0
) |
118 | 35, 117 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
119 | 118 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ( 0
(+g‘𝑅)
0 ) =
0
) |
120 | 115, 119 | eqtrd 2685 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ((𝑢‘𝑘)(+g‘𝑅)(𝑣‘𝑘)) = 0 ) |
121 | 80, 94, 120 | 3eqtrd 2689 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ((𝑢(+g‘𝑆)𝑣)‘𝑘) = 0 ) |
122 | 76, 121 | suppss 7370 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → ((𝑢(+g‘𝑆)𝑣) supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) |
123 | | sseq1 3659 |
. . . . . . . . 9
⊢ (𝑦 = ((𝑢(+g‘𝑆)𝑣) supp 0 ) → (𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) ↔ ((𝑢(+g‘𝑆)𝑣) supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) |
124 | | eleq1 2718 |
. . . . . . . . 9
⊢ (𝑦 = ((𝑢(+g‘𝑆)𝑣) supp 0 ) → (𝑦 ∈ 𝐴 ↔ ((𝑢(+g‘𝑆)𝑣) supp 0 ) ∈ 𝐴)) |
125 | 123, 124 | imbi12d 333 |
. . . . . . . 8
⊢ (𝑦 = ((𝑢(+g‘𝑆)𝑣) supp 0 ) → ((𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → 𝑦 ∈ 𝐴) ↔ (((𝑢(+g‘𝑆)𝑣) supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → ((𝑢(+g‘𝑆)𝑣) supp 0 ) ∈ 𝐴))) |
126 | 125 | spcgv 3324 |
. . . . . . 7
⊢ (((𝑢(+g‘𝑆)𝑣) supp 0 ) ∈ V →
(∀𝑦(𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → 𝑦 ∈ 𝐴) → (((𝑢(+g‘𝑆)𝑣) supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → ((𝑢(+g‘𝑆)𝑣) supp 0 ) ∈ 𝐴))) |
127 | 53, 75, 122, 126 | syl3c 66 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → ((𝑢(+g‘𝑆)𝑣) supp 0 ) ∈ 𝐴) |
128 | 1 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 𝑈 = {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}) |
129 | 128 | eleq2d 2716 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → ((𝑢(+g‘𝑆)𝑣) ∈ 𝑈 ↔ (𝑢(+g‘𝑆)𝑣) ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})) |
130 | | oveq1 6697 |
. . . . . . . . 9
⊢ (𝑔 = (𝑢(+g‘𝑆)𝑣) → (𝑔 supp 0 ) = ((𝑢(+g‘𝑆)𝑣) supp 0 )) |
131 | 130 | eleq1d 2715 |
. . . . . . . 8
⊢ (𝑔 = (𝑢(+g‘𝑆)𝑣) → ((𝑔 supp 0 ) ∈ 𝐴 ↔ ((𝑢(+g‘𝑆)𝑣) supp 0 ) ∈ 𝐴)) |
132 | 131 | elrab 3396 |
. . . . . . 7
⊢ ((𝑢(+g‘𝑆)𝑣) ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ ((𝑢(+g‘𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢(+g‘𝑆)𝑣) supp 0 ) ∈ 𝐴)) |
133 | 129, 132 | syl6bb 276 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → ((𝑢(+g‘𝑆)𝑣) ∈ 𝑈 ↔ ((𝑢(+g‘𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢(+g‘𝑆)𝑣) supp 0 ) ∈ 𝐴))) |
134 | 52, 127, 133 | mpbir2and 977 |
. . . . 5
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → (𝑢(+g‘𝑆)𝑣) ∈ 𝑈) |
135 | 134 | ralrimiva 2995 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ∀𝑣 ∈ 𝑈 (𝑢(+g‘𝑆)𝑣) ∈ 𝑈) |
136 | 4, 5, 6 | psrgrp 19446 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ Grp) |
137 | | eqid 2651 |
. . . . . . 7
⊢
(invg‘𝑆) = (invg‘𝑆) |
138 | 9, 137 | grpinvcl 17514 |
. . . . . 6
⊢ ((𝑆 ∈ Grp ∧ 𝑢 ∈ 𝐵) → ((invg‘𝑆)‘𝑢) ∈ 𝐵) |
139 | 136, 42, 138 | syl2an2r 893 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ((invg‘𝑆)‘𝑢) ∈ 𝐵) |
140 | | ovexd 6720 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (((invg‘𝑆)‘𝑢) supp 0 ) ∈
V) |
141 | 69 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴)) |
142 | | sseq2 3660 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑢 supp 0 ) → (𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ (𝑢 supp 0 ))) |
143 | 142 | imbi1d 330 |
. . . . . . . . 9
⊢ (𝑥 = (𝑢 supp 0 ) → ((𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴) ↔ (𝑦 ⊆ (𝑢 supp 0 ) → 𝑦 ∈ 𝐴))) |
144 | 143 | albidv 1889 |
. . . . . . . 8
⊢ (𝑥 = (𝑢 supp 0 ) → (∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴) ↔ ∀𝑦(𝑦 ⊆ (𝑢 supp 0 ) → 𝑦 ∈ 𝐴))) |
145 | 144 | rspcv 3336 |
. . . . . . 7
⊢ ((𝑢 supp 0 ) ∈ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴) → ∀𝑦(𝑦 ⊆ (𝑢 supp 0 ) → 𝑦 ∈ 𝐴))) |
146 | 54, 141, 145 | sylc 65 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ∀𝑦(𝑦 ⊆ (𝑢 supp 0 ) → 𝑦 ∈ 𝐴)) |
147 | 4, 11, 7, 9, 139 | psrelbas 19427 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ((invg‘𝑆)‘𝑢):𝐷⟶(Base‘𝑅)) |
148 | 5 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝐼 ∈ 𝑊) |
149 | 6 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑅 ∈ Grp) |
150 | | eqid 2651 |
. . . . . . . . . . 11
⊢
(invg‘𝑅) = (invg‘𝑅) |
151 | 4, 148, 149, 7, 150, 9, 137, 42 | psrneg 19448 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ((invg‘𝑆)‘𝑢) = ((invg‘𝑅) ∘ 𝑢)) |
152 | 151 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 ))) →
((invg‘𝑆)‘𝑢) = ((invg‘𝑅) ∘ 𝑢)) |
153 | 152 | fveq1d 6231 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 ))) →
(((invg‘𝑆)‘𝑢)‘𝑘) = (((invg‘𝑅) ∘ 𝑢)‘𝑘)) |
154 | | eldifi 3765 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 )) → 𝑘 ∈ 𝐷) |
155 | | fvco3 6314 |
. . . . . . . . 9
⊢ ((𝑢:𝐷⟶(Base‘𝑅) ∧ 𝑘 ∈ 𝐷) → (((invg‘𝑅) ∘ 𝑢)‘𝑘) = ((invg‘𝑅)‘(𝑢‘𝑘))) |
156 | 82, 154, 155 | syl2an 493 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 ))) →
(((invg‘𝑅)
∘ 𝑢)‘𝑘) =
((invg‘𝑅)‘(𝑢‘𝑘))) |
157 | 103 | fveq2d 6233 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 ))) →
((invg‘𝑅)‘(𝑢‘𝑘)) = ((invg‘𝑅)‘ 0 )) |
158 | 8, 150 | grpinvid 17523 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Grp →
((invg‘𝑅)‘ 0 ) = 0 ) |
159 | 149, 158 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ((invg‘𝑅)‘ 0 ) = 0 ) |
160 | 159 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 ))) →
((invg‘𝑅)‘ 0 ) = 0 ) |
161 | 157, 160 | eqtrd 2685 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 ))) →
((invg‘𝑅)‘(𝑢‘𝑘)) = 0 ) |
162 | 153, 156,
161 | 3eqtrd 2689 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 ))) →
(((invg‘𝑆)‘𝑢)‘𝑘) = 0 ) |
163 | 147, 162 | suppss 7370 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (((invg‘𝑆)‘𝑢) supp 0 ) ⊆ (𝑢 supp 0 )) |
164 | | sseq1 3659 |
. . . . . . . 8
⊢ (𝑦 =
(((invg‘𝑆)‘𝑢) supp 0 ) → (𝑦 ⊆ (𝑢 supp 0 ) ↔
(((invg‘𝑆)‘𝑢) supp 0 ) ⊆ (𝑢 supp 0 ))) |
165 | | eleq1 2718 |
. . . . . . . 8
⊢ (𝑦 =
(((invg‘𝑆)‘𝑢) supp 0 ) → (𝑦 ∈ 𝐴 ↔ (((invg‘𝑆)‘𝑢) supp 0 ) ∈ 𝐴)) |
166 | 164, 165 | imbi12d 333 |
. . . . . . 7
⊢ (𝑦 =
(((invg‘𝑆)‘𝑢) supp 0 ) → ((𝑦 ⊆ (𝑢 supp 0 ) → 𝑦 ∈ 𝐴) ↔ ((((invg‘𝑆)‘𝑢) supp 0 ) ⊆ (𝑢 supp 0 ) →
(((invg‘𝑆)‘𝑢) supp 0 ) ∈ 𝐴))) |
167 | 166 | spcgv 3324 |
. . . . . 6
⊢
((((invg‘𝑆)‘𝑢) supp 0 ) ∈ V →
(∀𝑦(𝑦 ⊆ (𝑢 supp 0 ) → 𝑦 ∈ 𝐴) → ((((invg‘𝑆)‘𝑢) supp 0 ) ⊆ (𝑢 supp 0 ) →
(((invg‘𝑆)‘𝑢) supp 0 ) ∈ 𝐴))) |
168 | 140, 146,
163, 167 | syl3c 66 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (((invg‘𝑆)‘𝑢) supp 0 ) ∈ 𝐴) |
169 | 44 | eleq2d 2716 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (((invg‘𝑆)‘𝑢) ∈ 𝑈 ↔ ((invg‘𝑆)‘𝑢) ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})) |
170 | | oveq1 6697 |
. . . . . . . 8
⊢ (𝑔 = ((invg‘𝑆)‘𝑢) → (𝑔 supp 0 ) =
(((invg‘𝑆)‘𝑢) supp 0 )) |
171 | 170 | eleq1d 2715 |
. . . . . . 7
⊢ (𝑔 = ((invg‘𝑆)‘𝑢) → ((𝑔 supp 0 ) ∈ 𝐴 ↔ (((invg‘𝑆)‘𝑢) supp 0 ) ∈ 𝐴)) |
172 | 171 | elrab 3396 |
. . . . . 6
⊢
(((invg‘𝑆)‘𝑢) ∈ {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ (((invg‘𝑆)‘𝑢) ∈ 𝐵 ∧ (((invg‘𝑆)‘𝑢) supp 0 ) ∈ 𝐴)) |
173 | 169, 172 | syl6bb 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (((invg‘𝑆)‘𝑢) ∈ 𝑈 ↔ (((invg‘𝑆)‘𝑢) ∈ 𝐵 ∧ (((invg‘𝑆)‘𝑢) supp 0 ) ∈ 𝐴))) |
174 | 139, 168,
173 | mpbir2and 977 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ((invg‘𝑆)‘𝑢) ∈ 𝑈) |
175 | 135, 174 | jca 553 |
. . 3
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (∀𝑣 ∈ 𝑈 (𝑢(+g‘𝑆)𝑣) ∈ 𝑈 ∧ ((invg‘𝑆)‘𝑢) ∈ 𝑈)) |
176 | 175 | ralrimiva 2995 |
. 2
⊢ (𝜑 → ∀𝑢 ∈ 𝑈 (∀𝑣 ∈ 𝑈 (𝑢(+g‘𝑆)𝑣) ∈ 𝑈 ∧ ((invg‘𝑆)‘𝑢) ∈ 𝑈)) |
177 | 9, 34, 137 | issubg2 17656 |
. . 3
⊢ (𝑆 ∈ Grp → (𝑈 ∈ (SubGrp‘𝑆) ↔ (𝑈 ⊆ 𝐵 ∧ 𝑈 ≠ ∅ ∧ ∀𝑢 ∈ 𝑈 (∀𝑣 ∈ 𝑈 (𝑢(+g‘𝑆)𝑣) ∈ 𝑈 ∧ ((invg‘𝑆)‘𝑢) ∈ 𝑈)))) |
178 | 136, 177 | syl 17 |
. 2
⊢ (𝜑 → (𝑈 ∈ (SubGrp‘𝑆) ↔ (𝑈 ⊆ 𝐵 ∧ 𝑈 ≠ ∅ ∧ ∀𝑢 ∈ 𝑈 (∀𝑣 ∈ 𝑈 (𝑢(+g‘𝑆)𝑣) ∈ 𝑈 ∧ ((invg‘𝑆)‘𝑢) ∈ 𝑈)))) |
179 | 3, 33, 176, 178 | mpbir3and 1264 |
1
⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑆)) |