![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mplmon2 | Structured version Visualization version GIF version |
Description: Express a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
Ref | Expression |
---|---|
mplmon2.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mplmon2.v | ⊢ · = ( ·𝑠 ‘𝑃) |
mplmon2.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
mplmon2.o | ⊢ 1 = (1r‘𝑅) |
mplmon2.z | ⊢ 0 = (0g‘𝑅) |
mplmon2.b | ⊢ 𝐵 = (Base‘𝑅) |
mplmon2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
mplmon2.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mplmon2.k | ⊢ (𝜑 → 𝐾 ∈ 𝐷) |
mplmon2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
mplmon2 | ⊢ (𝜑 → (𝑋 · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplmon2.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
2 | mplmon2.v | . . 3 ⊢ · = ( ·𝑠 ‘𝑃) | |
3 | mplmon2.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
4 | eqid 2770 | . . 3 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
5 | eqid 2770 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
6 | mplmon2.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
7 | mplmon2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | mplmon2.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
9 | mplmon2.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
10 | mplmon2.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
11 | mplmon2.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
12 | mplmon2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝐷) | |
13 | 1, 4, 8, 9, 6, 10, 11, 12 | mplmon 19677 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 )) ∈ (Base‘𝑃)) |
14 | 1, 2, 3, 4, 5, 6, 7, 13 | mplvsca 19661 | . 2 ⊢ (𝜑 → (𝑋 · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = ((𝐷 × {𝑋}) ∘𝑓 (.r‘𝑅)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 )))) |
15 | ovex 6822 | . . . . 5 ⊢ (ℕ0 ↑𝑚 𝐼) ∈ V | |
16 | 6, 15 | rabex2 4945 | . . . 4 ⊢ 𝐷 ∈ V |
17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
18 | 7 | adantr 466 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑋 ∈ 𝐵) |
19 | fvex 6342 | . . . . . 6 ⊢ (1r‘𝑅) ∈ V | |
20 | 9, 19 | eqeltri 2845 | . . . . 5 ⊢ 1 ∈ V |
21 | fvex 6342 | . . . . . 6 ⊢ (0g‘𝑅) ∈ V | |
22 | 8, 21 | eqeltri 2845 | . . . . 5 ⊢ 0 ∈ V |
23 | 20, 22 | ifex 4293 | . . . 4 ⊢ if(𝑦 = 𝐾, 1 , 0 ) ∈ V |
24 | 23 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → if(𝑦 = 𝐾, 1 , 0 ) ∈ V) |
25 | fconstmpt 5303 | . . . 4 ⊢ (𝐷 × {𝑋}) = (𝑦 ∈ 𝐷 ↦ 𝑋) | |
26 | 25 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐷 × {𝑋}) = (𝑦 ∈ 𝐷 ↦ 𝑋)) |
27 | eqidd 2771 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) | |
28 | 17, 18, 24, 26, 27 | offval2 7060 | . 2 ⊢ (𝜑 → ((𝐷 × {𝑋}) ∘𝑓 (.r‘𝑅)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 )))) |
29 | oveq2 6800 | . . . . 5 ⊢ ( 1 = if(𝑦 = 𝐾, 1 , 0 ) → (𝑋(.r‘𝑅) 1 ) = (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 ))) | |
30 | 29 | eqeq1d 2772 | . . . 4 ⊢ ( 1 = if(𝑦 = 𝐾, 1 , 0 ) → ((𝑋(.r‘𝑅) 1 ) = if(𝑦 = 𝐾, 𝑋, 0 ) ↔ (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 )) = if(𝑦 = 𝐾, 𝑋, 0 ))) |
31 | oveq2 6800 | . . . . 5 ⊢ ( 0 = if(𝑦 = 𝐾, 1 , 0 ) → (𝑋(.r‘𝑅) 0 ) = (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 ))) | |
32 | 31 | eqeq1d 2772 | . . . 4 ⊢ ( 0 = if(𝑦 = 𝐾, 1 , 0 ) → ((𝑋(.r‘𝑅) 0 ) = if(𝑦 = 𝐾, 𝑋, 0 ) ↔ (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 )) = if(𝑦 = 𝐾, 𝑋, 0 ))) |
33 | 3, 5, 9 | ringridm 18779 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋(.r‘𝑅) 1 ) = 𝑋) |
34 | 11, 7, 33 | syl2anc 565 | . . . . 5 ⊢ (𝜑 → (𝑋(.r‘𝑅) 1 ) = 𝑋) |
35 | iftrue 4229 | . . . . . 6 ⊢ (𝑦 = 𝐾 → if(𝑦 = 𝐾, 𝑋, 0 ) = 𝑋) | |
36 | 35 | eqcomd 2776 | . . . . 5 ⊢ (𝑦 = 𝐾 → 𝑋 = if(𝑦 = 𝐾, 𝑋, 0 )) |
37 | 34, 36 | sylan9eq 2824 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = 𝐾) → (𝑋(.r‘𝑅) 1 ) = if(𝑦 = 𝐾, 𝑋, 0 )) |
38 | 3, 5, 8 | ringrz 18795 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋(.r‘𝑅) 0 ) = 0 ) |
39 | 11, 7, 38 | syl2anc 565 | . . . . 5 ⊢ (𝜑 → (𝑋(.r‘𝑅) 0 ) = 0 ) |
40 | iffalse 4232 | . . . . . 6 ⊢ (¬ 𝑦 = 𝐾 → if(𝑦 = 𝐾, 𝑋, 0 ) = 0 ) | |
41 | 40 | eqcomd 2776 | . . . . 5 ⊢ (¬ 𝑦 = 𝐾 → 0 = if(𝑦 = 𝐾, 𝑋, 0 )) |
42 | 39, 41 | sylan9eq 2824 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑦 = 𝐾) → (𝑋(.r‘𝑅) 0 ) = if(𝑦 = 𝐾, 𝑋, 0 )) |
43 | 30, 32, 37, 42 | ifbothda 4260 | . . 3 ⊢ (𝜑 → (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 )) = if(𝑦 = 𝐾, 𝑋, 0 )) |
44 | 43 | mpteq2dv 4877 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ (𝑋(.r‘𝑅)if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 ))) |
45 | 14, 28, 44 | 3eqtrd 2808 | 1 ⊢ (𝜑 → (𝑋 · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 {crab 3064 Vcvv 3349 ifcif 4223 {csn 4314 ↦ cmpt 4861 × cxp 5247 ◡ccnv 5248 “ cima 5252 ‘cfv 6031 (class class class)co 6792 ∘𝑓 cof 7041 ↑𝑚 cmap 8008 Fincfn 8108 ℕcn 11221 ℕ0cn0 11493 Basecbs 16063 .rcmulr 16149 ·𝑠 cvsca 16152 0gc0g 16307 1rcur 18708 Ringcrg 18754 mPoly cmpl 19567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-om 7212 df-1st 7314 df-2nd 7315 df-supp 7446 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-map 8010 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fsupp 8431 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-uz 11888 df-fz 12533 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-sca 16164 df-vsca 16165 df-tset 16167 df-0g 16309 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-grp 17632 df-mgp 18697 df-ur 18709 df-ring 18756 df-psr 19570 df-mpl 19572 |
This theorem is referenced by: mplascl 19710 mplmon2cl 19714 mplmon2mul 19715 mplcoe4 19717 coe1tm 19857 |
Copyright terms: Public domain | W3C validator |