MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpllsslem Structured version   Visualization version   GIF version

Theorem mpllsslem 19637
Description: If 𝐴 is an ideal of subsets (a nonempty collection closed under subset and binary union) of the set 𝐷 of finite bags (the primary applications being 𝐴 = Fin and 𝐴 = 𝒫 𝐵 for some 𝐵), then the set of all power series whose coefficient functions are supported on an element of 𝐴 is a linear subspace of the set of all power series. (Contributed by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 16-Jul-2019.)
Hypotheses
Ref Expression
mplsubglem.s 𝑆 = (𝐼 mPwSer 𝑅)
mplsubglem.b 𝐵 = (Base‘𝑆)
mplsubglem.z 0 = (0g𝑅)
mplsubglem.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplsubglem.i (𝜑𝐼𝑊)
mplsubglem.0 (𝜑 → ∅ ∈ 𝐴)
mplsubglem.a ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦) ∈ 𝐴)
mplsubglem.y ((𝜑 ∧ (𝑥𝐴𝑦𝑥)) → 𝑦𝐴)
mplsubglem.u (𝜑𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
mpllsslem.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
mpllsslem (𝜑𝑈 ∈ (LSubSp‘𝑆))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦, 0   𝐴,𝑓,𝑔,𝑥,𝑦   𝐵,𝑓,𝑔   𝐷,𝑔   𝑓,𝐼   𝜑,𝑥,𝑦   𝑆,𝑓,𝑔,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦,𝑓)   𝑅(𝑥,𝑦,𝑓,𝑔)   𝑆(𝑥)   𝑈(𝑥,𝑦,𝑓,𝑔)   𝐼(𝑥,𝑦,𝑔)   𝑊(𝑥,𝑦,𝑓,𝑔)

Proof of Theorem mpllsslem
Dummy variables 𝑘 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubglem.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 mplsubglem.i . . 3 (𝜑𝐼𝑊)
3 mpllsslem.r . . 3 (𝜑𝑅 ∈ Ring)
41, 2, 3psrsca 19591 . 2 (𝜑𝑅 = (Scalar‘𝑆))
5 eqidd 2761 . 2 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
6 mplsubglem.b . . 3 𝐵 = (Base‘𝑆)
76a1i 11 . 2 (𝜑𝐵 = (Base‘𝑆))
8 eqidd 2761 . 2 (𝜑 → (+g𝑆) = (+g𝑆))
9 eqidd 2761 . 2 (𝜑 → ( ·𝑠𝑆) = ( ·𝑠𝑆))
10 eqidd 2761 . 2 (𝜑 → (LSubSp‘𝑆) = (LSubSp‘𝑆))
11 mplsubglem.z . . . 4 0 = (0g𝑅)
12 mplsubglem.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
13 mplsubglem.0 . . . 4 (𝜑 → ∅ ∈ 𝐴)
14 mplsubglem.a . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦) ∈ 𝐴)
15 mplsubglem.y . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝑥)) → 𝑦𝐴)
16 mplsubglem.u . . . 4 (𝜑𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
17 ringgrp 18752 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
183, 17syl 17 . . . 4 (𝜑𝑅 ∈ Grp)
191, 6, 11, 12, 2, 13, 14, 15, 16, 18mplsubglem 19636 . . 3 (𝜑𝑈 ∈ (SubGrp‘𝑆))
206subgss 17796 . . 3 (𝑈 ∈ (SubGrp‘𝑆) → 𝑈𝐵)
2119, 20syl 17 . 2 (𝜑𝑈𝐵)
22 eqid 2760 . . . 4 (0g𝑆) = (0g𝑆)
2322subg0cl 17803 . . 3 (𝑈 ∈ (SubGrp‘𝑆) → (0g𝑆) ∈ 𝑈)
24 ne0i 4064 . . 3 ((0g𝑆) ∈ 𝑈𝑈 ≠ ∅)
2519, 23, 243syl 18 . 2 (𝜑𝑈 ≠ ∅)
2619adantr 472 . . 3 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈𝑤𝑈)) → 𝑈 ∈ (SubGrp‘𝑆))
27 eqid 2760 . . . . . 6 ( ·𝑠𝑆) = ( ·𝑠𝑆)
28 eqid 2760 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
293adantr 472 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑅 ∈ Ring)
30 simprl 811 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑢 ∈ (Base‘𝑅))
31 simprr 813 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑣𝑈)
3216adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
3332eleq2d 2825 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑣𝑈𝑣 ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}))
34 oveq1 6820 . . . . . . . . . . 11 (𝑔 = 𝑣 → (𝑔 supp 0 ) = (𝑣 supp 0 ))
3534eleq1d 2824 . . . . . . . . . 10 (𝑔 = 𝑣 → ((𝑔 supp 0 ) ∈ 𝐴 ↔ (𝑣 supp 0 ) ∈ 𝐴))
3635elrab 3504 . . . . . . . . 9 (𝑣 ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ (𝑣𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴))
3733, 36syl6bb 276 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑣𝑈 ↔ (𝑣𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴)))
3831, 37mpbid 222 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑣𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴))
3938simpld 477 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑣𝐵)
401, 27, 28, 6, 29, 30, 39psrvscacl 19595 . . . . 5 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑢( ·𝑠𝑆)𝑣) ∈ 𝐵)
41 ovex 6841 . . . . . . 7 ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ V
4241a1i 11 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ V)
43 sseq2 3768 . . . . . . . . 9 (𝑥 = (𝑣 supp 0 ) → (𝑦𝑥𝑦 ⊆ (𝑣 supp 0 )))
4443imbi1d 330 . . . . . . . 8 (𝑥 = (𝑣 supp 0 ) → ((𝑦𝑥𝑦𝐴) ↔ (𝑦 ⊆ (𝑣 supp 0 ) → 𝑦𝐴)))
4544albidv 1998 . . . . . . 7 (𝑥 = (𝑣 supp 0 ) → (∀𝑦(𝑦𝑥𝑦𝐴) ↔ ∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦𝐴)))
4615expr 644 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑦𝑥𝑦𝐴))
4746alrimiv 2004 . . . . . . . . 9 ((𝜑𝑥𝐴) → ∀𝑦(𝑦𝑥𝑦𝐴))
4847ralrimiva 3104 . . . . . . . 8 (𝜑 → ∀𝑥𝐴𝑦(𝑦𝑥𝑦𝐴))
4948adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ∀𝑥𝐴𝑦(𝑦𝑥𝑦𝐴))
5038simprd 482 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑣 supp 0 ) ∈ 𝐴)
5145, 49, 50rspcdva 3455 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦𝐴))
521, 28, 12, 6, 40psrelbas 19581 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑢( ·𝑠𝑆)𝑣):𝐷⟶(Base‘𝑅))
53 eqid 2760 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
5430adantr 472 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑢 ∈ (Base‘𝑅))
5539adantr 472 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑣𝐵)
56 eldifi 3875 . . . . . . . . . 10 (𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 )) → 𝑘𝐷)
5756adantl 473 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → 𝑘𝐷)
581, 27, 28, 6, 53, 12, 54, 55, 57psrvscaval 19594 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → ((𝑢( ·𝑠𝑆)𝑣)‘𝑘) = (𝑢(.r𝑅)(𝑣𝑘)))
591, 28, 12, 6, 39psrelbas 19581 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝑣:𝐷⟶(Base‘𝑅))
60 ssid 3765 . . . . . . . . . . 11 (𝑣 supp 0 ) ⊆ (𝑣 supp 0 )
6160a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑣 supp 0 ) ⊆ (𝑣 supp 0 ))
62 ovex 6841 . . . . . . . . . . . 12 (ℕ0𝑚 𝐼) ∈ V
6312, 62rabex2 4966 . . . . . . . . . . 11 𝐷 ∈ V
6463a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 𝐷 ∈ V)
65 fvex 6362 . . . . . . . . . . . 12 (0g𝑅) ∈ V
6611, 65eqeltri 2835 . . . . . . . . . . 11 0 ∈ V
6766a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → 0 ∈ V)
6859, 61, 64, 67suppssr 7495 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑣𝑘) = 0 )
6968oveq2d 6829 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑢(.r𝑅)(𝑣𝑘)) = (𝑢(.r𝑅) 0 ))
7028, 53, 11ringrz 18788 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑢 ∈ (Base‘𝑅)) → (𝑢(.r𝑅) 0 ) = 0 )
713, 30, 70syl2an2r 911 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑢(.r𝑅) 0 ) = 0 )
7271adantr 472 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑢(.r𝑅) 0 ) = 0 )
7358, 69, 723eqtrd 2798 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → ((𝑢( ·𝑠𝑆)𝑣)‘𝑘) = 0 )
7452, 73suppss 7494 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ))
75 sseq1 3767 . . . . . . . 8 (𝑦 = ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) → (𝑦 ⊆ (𝑣 supp 0 ) ↔ ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 )))
76 eleq1 2827 . . . . . . . 8 (𝑦 = ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) → (𝑦𝐴 ↔ ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴))
7775, 76imbi12d 333 . . . . . . 7 (𝑦 = ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) → ((𝑦 ⊆ (𝑣 supp 0 ) → 𝑦𝐴) ↔ (((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ) → ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴)))
7877spcgv 3433 . . . . . 6 (((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ V → (∀𝑦(𝑦 ⊆ (𝑣 supp 0 ) → 𝑦𝐴) → (((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ⊆ (𝑣 supp 0 ) → ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴)))
7942, 51, 74, 78syl3c 66 . . . . 5 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴)
8032eleq2d 2825 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ((𝑢( ·𝑠𝑆)𝑣) ∈ 𝑈 ↔ (𝑢( ·𝑠𝑆)𝑣) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}))
81 oveq1 6820 . . . . . . . 8 (𝑔 = (𝑢( ·𝑠𝑆)𝑣) → (𝑔 supp 0 ) = ((𝑢( ·𝑠𝑆)𝑣) supp 0 ))
8281eleq1d 2824 . . . . . . 7 (𝑔 = (𝑢( ·𝑠𝑆)𝑣) → ((𝑔 supp 0 ) ∈ 𝐴 ↔ ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴))
8382elrab 3504 . . . . . 6 ((𝑢( ·𝑠𝑆)𝑣) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ ((𝑢( ·𝑠𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴))
8480, 83syl6bb 276 . . . . 5 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → ((𝑢( ·𝑠𝑆)𝑣) ∈ 𝑈 ↔ ((𝑢( ·𝑠𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢( ·𝑠𝑆)𝑣) supp 0 ) ∈ 𝐴)))
8540, 79, 84mpbir2and 995 . . . 4 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈)) → (𝑢( ·𝑠𝑆)𝑣) ∈ 𝑈)
86853adantr3 1177 . . 3 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈𝑤𝑈)) → (𝑢( ·𝑠𝑆)𝑣) ∈ 𝑈)
87 simpr3 1238 . . 3 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈𝑤𝑈)) → 𝑤𝑈)
88 eqid 2760 . . . 4 (+g𝑆) = (+g𝑆)
8988subgcl 17805 . . 3 ((𝑈 ∈ (SubGrp‘𝑆) ∧ (𝑢( ·𝑠𝑆)𝑣) ∈ 𝑈𝑤𝑈) → ((𝑢( ·𝑠𝑆)𝑣)(+g𝑆)𝑤) ∈ 𝑈)
9026, 86, 87, 89syl3anc 1477 . 2 ((𝜑 ∧ (𝑢 ∈ (Base‘𝑅) ∧ 𝑣𝑈𝑤𝑈)) → ((𝑢( ·𝑠𝑆)𝑣)(+g𝑆)𝑤) ∈ 𝑈)
914, 5, 7, 8, 9, 10, 21, 25, 90islssd 19138 1 (𝜑𝑈 ∈ (LSubSp‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072  wal 1630   = wceq 1632  wcel 2139  wne 2932  wral 3050  {crab 3054  Vcvv 3340  cdif 3712  cun 3713  wss 3715  c0 4058  ccnv 5265  cima 5269  cfv 6049  (class class class)co 6813   supp csupp 7463  𝑚 cmap 8023  Fincfn 8121  cn 11212  0cn0 11484  Basecbs 16059  +gcplusg 16143  .rcmulr 16144   ·𝑠 cvsca 16147  0gc0g 16302  Grpcgrp 17623  SubGrpcsubg 17789  Ringcrg 18747  LSubSpclss 19134   mPwSer cmps 19553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-sca 16159  df-vsca 16160  df-tset 16162  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-grp 17626  df-minusg 17627  df-subg 17792  df-mgp 18690  df-ring 18749  df-lss 19135  df-psr 19558
This theorem is referenced by:  mpllss  19640
  Copyright terms: Public domain W3C validator