MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplelsfi Structured version   Visualization version   GIF version

Theorem mplelsfi 19705
Description: A polynomial treated as a coefficient function has finitely many nonzero terms. (Contributed by Stefan O'Rear, 22-Mar-2015.) (Revised by AV, 25-Jun-2019.)
Hypotheses
Ref Expression
mplrcl.p 𝑃 = (𝐼 mPoly 𝑅)
mplrcl.b 𝐵 = (Base‘𝑃)
mplelsfi.z 0 = (0g𝑅)
mplelsfi.f (𝜑𝐹𝐵)
mplelsfi.r (𝜑𝑅𝑉)
Assertion
Ref Expression
mplelsfi (𝜑𝐹 finSupp 0 )

Proof of Theorem mplelsfi
StepHypRef Expression
1 mplelsfi.f . 2 (𝜑𝐹𝐵)
2 mplrcl.p . . . 4 𝑃 = (𝐼 mPoly 𝑅)
3 eqid 2770 . . . 4 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
4 eqid 2770 . . . 4 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
5 mplelsfi.z . . . 4 0 = (0g𝑅)
6 mplrcl.b . . . 4 𝐵 = (Base‘𝑃)
72, 3, 4, 5, 6mplelbas 19644 . . 3 (𝐹𝐵 ↔ (𝐹 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝐹 finSupp 0 ))
87simprbi 478 . 2 (𝐹𝐵𝐹 finSupp 0 )
91, 8syl 17 1 (𝜑𝐹 finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1630  wcel 2144   class class class wbr 4784  cfv 6031  (class class class)co 6792   finSupp cfsupp 8430  Basecbs 16063  0gc0g 16307   mPwSer cmps 19565   mPoly cmpl 19567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-i2m1 10205  ax-1ne0 10206  ax-rrecex 10209  ax-cnre 10210
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-nn 11222  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-psr 19570  df-mpl 19572
This theorem is referenced by:  evlslem2  19726  evlslem6  19727  coe1sfi  19797  mdegldg  24045  mdegcl  24048
  Copyright terms: Public domain W3C validator