MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplcoe5 Structured version   Visualization version   GIF version

Theorem mplcoe5 19516
Description: Decompose a monomial into a finite product of powers of variables. Instead of assuming that 𝑅 is a commutative ring (as in mplcoe2 19517), it is sufficient that 𝑅 is a ring and all the variables of the multivariate polynomial commute. (Contributed by AV, 7-Oct-2019.)
Hypotheses
Ref Expression
mplcoe1.p 𝑃 = (𝐼 mPoly 𝑅)
mplcoe1.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplcoe1.z 0 = (0g𝑅)
mplcoe1.o 1 = (1r𝑅)
mplcoe1.i (𝜑𝐼𝑊)
mplcoe2.g 𝐺 = (mulGrp‘𝑃)
mplcoe2.m = (.g𝐺)
mplcoe2.v 𝑉 = (𝐼 mVar 𝑅)
mplcoe5.r (𝜑𝑅 ∈ Ring)
mplcoe5.y (𝜑𝑌𝐷)
mplcoe5.c (𝜑 → ∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)))
Assertion
Ref Expression
mplcoe5 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))))
Distinct variable groups:   𝑥,𝑘, ,𝑦   1 ,𝑘   𝑥,𝑦, 1   𝑘,𝐺,𝑥   𝑓,𝑘,𝑥,𝑦,𝐼   𝜑,𝑘,𝑥,𝑦   𝑅,𝑓,𝑦   𝐷,𝑘,𝑥,𝑦   𝑃,𝑘,𝑥   𝑘,𝑉,𝑥   0 ,𝑓,𝑘,𝑥,𝑦   𝑓,𝑌,𝑘,𝑥,𝑦   𝑘,𝑊,𝑦   𝑦,𝐺   𝑦,𝑉   𝑦,
Allowed substitution hints:   𝜑(𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑥,𝑘)   1 (𝑓)   (𝑓)   𝐺(𝑓)   𝑉(𝑓)   𝑊(𝑥,𝑓)

Proof of Theorem mplcoe5
Dummy variables 𝑖 𝑤 𝑧 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplcoe5.y . . . . . . . . 9 (𝜑𝑌𝐷)
2 mplcoe1.i . . . . . . . . . 10 (𝜑𝐼𝑊)
3 mplcoe1.d . . . . . . . . . . 11 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
43psrbag 19412 . . . . . . . . . 10 (𝐼𝑊 → (𝑌𝐷 ↔ (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin)))
52, 4syl 17 . . . . . . . . 9 (𝜑 → (𝑌𝐷 ↔ (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin)))
61, 5mpbid 222 . . . . . . . 8 (𝜑 → (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin))
76simpld 474 . . . . . . 7 (𝜑𝑌:𝐼⟶ℕ0)
87feqmptd 6288 . . . . . 6 (𝜑𝑌 = (𝑖𝐼 ↦ (𝑌𝑖)))
9 iftrue 4125 . . . . . . . . 9 (𝑖 ∈ (𝑌 “ ℕ) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0) = (𝑌𝑖))
109adantl 481 . . . . . . . 8 (((𝜑𝑖𝐼) ∧ 𝑖 ∈ (𝑌 “ ℕ)) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0) = (𝑌𝑖))
11 eldif 3617 . . . . . . . . . 10 (𝑖 ∈ (𝐼 ∖ (𝑌 “ ℕ)) ↔ (𝑖𝐼 ∧ ¬ 𝑖 ∈ (𝑌 “ ℕ)))
12 ifid 4158 . . . . . . . . . . 11 if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), (𝑌𝑖)) = (𝑌𝑖)
13 frnnn0supp 11387 . . . . . . . . . . . . . . 15 ((𝐼𝑊𝑌:𝐼⟶ℕ0) → (𝑌 supp 0) = (𝑌 “ ℕ))
142, 7, 13syl2anc 694 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 supp 0) = (𝑌 “ ℕ))
15 eqimss 3690 . . . . . . . . . . . . . 14 ((𝑌 supp 0) = (𝑌 “ ℕ) → (𝑌 supp 0) ⊆ (𝑌 “ ℕ))
1614, 15syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑌 supp 0) ⊆ (𝑌 “ ℕ))
17 c0ex 10072 . . . . . . . . . . . . . 14 0 ∈ V
1817a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ V)
197, 16, 2, 18suppssr 7371 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → (𝑌𝑖) = 0)
2019ifeq2d 4138 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), (𝑌𝑖)) = if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0))
2112, 20syl5reqr 2700 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0) = (𝑌𝑖))
2211, 21sylan2br 492 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐼 ∧ ¬ 𝑖 ∈ (𝑌 “ ℕ))) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0) = (𝑌𝑖))
2322anassrs 681 . . . . . . . 8 (((𝜑𝑖𝐼) ∧ ¬ 𝑖 ∈ (𝑌 “ ℕ)) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0) = (𝑌𝑖))
2410, 23pm2.61dan 849 . . . . . . 7 ((𝜑𝑖𝐼) → if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0) = (𝑌𝑖))
2524mpteq2dva 4777 . . . . . 6 (𝜑 → (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)) = (𝑖𝐼 ↦ (𝑌𝑖)))
268, 25eqtr4d 2688 . . . . 5 (𝜑𝑌 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)))
2726eqeq2d 2661 . . . 4 (𝜑 → (𝑦 = 𝑌𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0))))
2827ifbid 4141 . . 3 (𝜑 → if(𝑦 = 𝑌, 1 , 0 ) = if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 ))
2928mpteq2dv 4778 . 2 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )))
30 cnvimass 5520 . . . . 5 (𝑌 “ ℕ) ⊆ dom 𝑌
31 fdm 6089 . . . . . 6 (𝑌:𝐼⟶ℕ0 → dom 𝑌 = 𝐼)
327, 31syl 17 . . . . 5 (𝜑 → dom 𝑌 = 𝐼)
3330, 32syl5sseq 3686 . . . 4 (𝜑 → (𝑌 “ ℕ) ⊆ 𝐼)
346simprd 478 . . . . 5 (𝜑 → (𝑌 “ ℕ) ∈ Fin)
35 sseq1 3659 . . . . . . . 8 (𝑤 = ∅ → (𝑤𝐼 ↔ ∅ ⊆ 𝐼))
36 noel 3952 . . . . . . . . . . . . . . . 16 ¬ 𝑖 ∈ ∅
37 eleq2 2719 . . . . . . . . . . . . . . . 16 (𝑤 = ∅ → (𝑖𝑤𝑖 ∈ ∅))
3836, 37mtbiri 316 . . . . . . . . . . . . . . 15 (𝑤 = ∅ → ¬ 𝑖𝑤)
3938iffalsed 4130 . . . . . . . . . . . . . 14 (𝑤 = ∅ → if(𝑖𝑤, (𝑌𝑖), 0) = 0)
4039mpteq2dv 4778 . . . . . . . . . . . . 13 (𝑤 = ∅ → (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) = (𝑖𝐼 ↦ 0))
41 fconstmpt 5197 . . . . . . . . . . . . 13 (𝐼 × {0}) = (𝑖𝐼 ↦ 0)
4240, 41syl6eqr 2703 . . . . . . . . . . . 12 (𝑤 = ∅ → (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) = (𝐼 × {0}))
4342eqeq2d 2661 . . . . . . . . . . 11 (𝑤 = ∅ → (𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) ↔ 𝑦 = (𝐼 × {0})))
4443ifbid 4141 . . . . . . . . . 10 (𝑤 = ∅ → if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝐼 × {0}), 1 , 0 ))
4544mpteq2dv 4778 . . . . . . . . 9 (𝑤 = ∅ → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )))
46 mpteq1 4770 . . . . . . . . . . . 12 (𝑤 = ∅ → (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))) = (𝑘 ∈ ∅ ↦ ((𝑌𝑘) (𝑉𝑘))))
47 mpt0 6059 . . . . . . . . . . . 12 (𝑘 ∈ ∅ ↦ ((𝑌𝑘) (𝑉𝑘))) = ∅
4846, 47syl6eq 2701 . . . . . . . . . . 11 (𝑤 = ∅ → (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))) = ∅)
4948oveq2d 6706 . . . . . . . . . 10 (𝑤 = ∅ → (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) = (𝐺 Σg ∅))
50 mplcoe2.g . . . . . . . . . . . 12 𝐺 = (mulGrp‘𝑃)
51 eqid 2651 . . . . . . . . . . . 12 (1r𝑃) = (1r𝑃)
5250, 51ringidval 18549 . . . . . . . . . . 11 (1r𝑃) = (0g𝐺)
5352gsum0 17325 . . . . . . . . . 10 (𝐺 Σg ∅) = (1r𝑃)
5449, 53syl6eq 2701 . . . . . . . . 9 (𝑤 = ∅ → (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) = (1r𝑃))
5545, 54eqeq12d 2666 . . . . . . . 8 (𝑤 = ∅ → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (1r𝑃)))
5635, 55imbi12d 333 . . . . . . 7 (𝑤 = ∅ → ((𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))))) ↔ (∅ ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (1r𝑃))))
5756imbi2d 329 . . . . . 6 (𝑤 = ∅ → ((𝜑 → (𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))))) ↔ (𝜑 → (∅ ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (1r𝑃)))))
58 sseq1 3659 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤𝐼𝑥𝐼))
59 eleq2 2719 . . . . . . . . . . . . . 14 (𝑤 = 𝑥 → (𝑖𝑤𝑖𝑥))
6059ifbid 4141 . . . . . . . . . . . . 13 (𝑤 = 𝑥 → if(𝑖𝑤, (𝑌𝑖), 0) = if(𝑖𝑥, (𝑌𝑖), 0))
6160mpteq2dv 4778 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)))
6261eqeq2d 2661 . . . . . . . . . . 11 (𝑤 = 𝑥 → (𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) ↔ 𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0))))
6362ifbid 4141 . . . . . . . . . 10 (𝑤 = 𝑥 → if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))
6463mpteq2dv 4778 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )))
65 mpteq1 4770 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))) = (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))
6665oveq2d 6706 . . . . . . . . 9 (𝑤 = 𝑥 → (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘)))))
6764, 66eqeq12d 2666 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))))
6858, 67imbi12d 333 . . . . . . 7 (𝑤 = 𝑥 → ((𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))))) ↔ (𝑥𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘)))))))
6968imbi2d 329 . . . . . 6 (𝑤 = 𝑥 → ((𝜑 → (𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))))) ↔ (𝜑 → (𝑥𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))))))
70 sseq1 3659 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑤𝐼 ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐼))
71 eleq2 2719 . . . . . . . . . . . . . 14 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑖𝑤𝑖 ∈ (𝑥 ∪ {𝑧})))
7271ifbid 4141 . . . . . . . . . . . . 13 (𝑤 = (𝑥 ∪ {𝑧}) → if(𝑖𝑤, (𝑌𝑖), 0) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0))
7372mpteq2dv 4778 . . . . . . . . . . . 12 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)))
7473eqeq2d 2661 . . . . . . . . . . 11 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) ↔ 𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0))))
7574ifbid 4141 . . . . . . . . . 10 (𝑤 = (𝑥 ∪ {𝑧}) → if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 ))
7675mpteq2dv 4778 . . . . . . . . 9 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )))
77 mpteq1 4770 . . . . . . . . . 10 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))) = (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))))
7877oveq2d 6706 . . . . . . . . 9 (𝑤 = (𝑥 ∪ {𝑧}) → (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))))
7976, 78eqeq12d 2666 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑧}) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))))))
8070, 79imbi12d 333 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑧}) → ((𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))))) ↔ ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))))))
8180imbi2d 329 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑧}) → ((𝜑 → (𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))))) ↔ (𝜑 → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))))))))
82 sseq1 3659 . . . . . . . 8 (𝑤 = (𝑌 “ ℕ) → (𝑤𝐼 ↔ (𝑌 “ ℕ) ⊆ 𝐼))
83 eleq2 2719 . . . . . . . . . . . . . 14 (𝑤 = (𝑌 “ ℕ) → (𝑖𝑤𝑖 ∈ (𝑌 “ ℕ)))
8483ifbid 4141 . . . . . . . . . . . . 13 (𝑤 = (𝑌 “ ℕ) → if(𝑖𝑤, (𝑌𝑖), 0) = if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0))
8584mpteq2dv 4778 . . . . . . . . . . . 12 (𝑤 = (𝑌 “ ℕ) → (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)))
8685eqeq2d 2661 . . . . . . . . . . 11 (𝑤 = (𝑌 “ ℕ) → (𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)) ↔ 𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0))))
8786ifbid 4141 . . . . . . . . . 10 (𝑤 = (𝑌 “ ℕ) → if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 ) = if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 ))
8887mpteq2dv 4778 . . . . . . . . 9 (𝑤 = (𝑌 “ ℕ) → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )))
89 mpteq1 4770 . . . . . . . . . 10 (𝑤 = (𝑌 “ ℕ) → (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))) = (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘))))
9089oveq2d 6706 . . . . . . . . 9 (𝑤 = (𝑌 “ ℕ) → (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘)))))
9188, 90eqeq12d 2666 . . . . . . . 8 (𝑤 = (𝑌 “ ℕ) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘))))))
9282, 91imbi12d 333 . . . . . . 7 (𝑤 = (𝑌 “ ℕ) → ((𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘))))) ↔ ((𝑌 “ ℕ) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘)))))))
9392imbi2d 329 . . . . . 6 (𝑤 = (𝑌 “ ℕ) → ((𝜑 → (𝑤𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑤, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑤 ↦ ((𝑌𝑘) (𝑉𝑘)))))) ↔ (𝜑 → ((𝑌 “ ℕ) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘))))))))
94 mplcoe1.p . . . . . . . . 9 𝑃 = (𝐼 mPoly 𝑅)
95 mplcoe1.z . . . . . . . . 9 0 = (0g𝑅)
96 mplcoe1.o . . . . . . . . 9 1 = (1r𝑅)
97 mplcoe5.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
9894, 3, 95, 96, 51, 2, 97mpl1 19492 . . . . . . . 8 (𝜑 → (1r𝑃) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )))
9998eqcomd 2657 . . . . . . 7 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (1r𝑃))
10099a1d 25 . . . . . 6 (𝜑 → (∅ ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 1 , 0 )) = (1r𝑃)))
101 ssun1 3809 . . . . . . . . . . 11 𝑥 ⊆ (𝑥 ∪ {𝑧})
102 sstr2 3643 . . . . . . . . . . 11 (𝑥 ⊆ (𝑥 ∪ {𝑧}) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼𝑥𝐼))
103101, 102ax-mp 5 . . . . . . . . . 10 ((𝑥 ∪ {𝑧}) ⊆ 𝐼𝑥𝐼)
104103imim1i 63 . . . . . . . . 9 ((𝑥𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))))
105 oveq1 6697 . . . . . . . . . . . 12 ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘)))) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))(.r𝑃)((𝑌𝑧) (𝑉𝑧))) = ((𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))(.r𝑃)((𝑌𝑧) (𝑉𝑧))))
106 eqid 2651 . . . . . . . . . . . . . . 15 (Base‘𝑃) = (Base‘𝑃)
1072adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝐼𝑊)
10897adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑅 ∈ Ring)
1097adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑌:𝐼⟶ℕ0)
110109ffvelrnda 6399 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) → (𝑌𝑖) ∈ ℕ0)
111 0nn0 11345 . . . . . . . . . . . . . . . . . 18 0 ∈ ℕ0
112 ifcl 4163 . . . . . . . . . . . . . . . . . 18 (((𝑌𝑖) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑖𝑥, (𝑌𝑖), 0) ∈ ℕ0)
113110, 111, 112sylancl 695 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) → if(𝑖𝑥, (𝑌𝑖), 0) ∈ ℕ0)
114 eqid 2651 . . . . . . . . . . . . . . . . 17 (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0))
115113, 114fmptd 6425 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)):𝐼⟶ℕ0)
116 frnnn0supp 11387 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑊 ∧ (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)):𝐼⟶ℕ0) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) supp 0) = ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) “ ℕ))
117107, 115, 116syl2anc 694 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) supp 0) = ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) “ ℕ))
118 simprll 819 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑥 ∈ Fin)
119 eldifn 3766 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (𝐼𝑥) → ¬ 𝑖𝑥)
120119adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ (𝐼𝑥)) → ¬ 𝑖𝑥)
121120iffalsed 4130 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖 ∈ (𝐼𝑥)) → if(𝑖𝑥, (𝑌𝑖), 0) = 0)
122121, 107suppss2 7374 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) supp 0) ⊆ 𝑥)
123 ssfi 8221 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ Fin ∧ ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) supp 0) ⊆ 𝑥) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) supp 0) ∈ Fin)
124118, 122, 123syl2anc 694 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) supp 0) ∈ Fin)
125117, 124eqeltrrd 2731 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) “ ℕ) ∈ Fin)
1263psrbag 19412 . . . . . . . . . . . . . . . . 17 (𝐼𝑊 → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∈ 𝐷 ↔ ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)):𝐼⟶ℕ0 ∧ ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) “ ℕ) ∈ Fin)))
127107, 126syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∈ 𝐷 ↔ ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)):𝐼⟶ℕ0 ∧ ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) “ ℕ) ∈ Fin)))
128115, 125, 127mpbir2and 977 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∈ 𝐷)
129 eqid 2651 . . . . . . . . . . . . . . 15 (.r𝑃) = (.r𝑃)
130 ssun2 3810 . . . . . . . . . . . . . . . . . . 19 {𝑧} ⊆ (𝑥 ∪ {𝑧})
131 simprr 811 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑥 ∪ {𝑧}) ⊆ 𝐼)
132130, 131syl5ss 3647 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → {𝑧} ⊆ 𝐼)
133 vex 3234 . . . . . . . . . . . . . . . . . . 19 𝑧 ∈ V
134133snss 4348 . . . . . . . . . . . . . . . . . 18 (𝑧𝐼 ↔ {𝑧} ⊆ 𝐼)
135132, 134sylibr 224 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑧𝐼)
136109, 135ffvelrnd 6400 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑌𝑧) ∈ ℕ0)
1373snifpsrbag 19414 . . . . . . . . . . . . . . . 16 ((𝐼𝑊 ∧ (𝑌𝑧) ∈ ℕ0) → (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)) ∈ 𝐷)
138107, 136, 137syl2anc 694 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)) ∈ 𝐷)
13994, 106, 95, 96, 3, 107, 108, 128, 129, 138mplmonmul 19512 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))(.r𝑃)(𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)), 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∘𝑓 + (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0))), 1 , 0 )))
140 mplcoe2.m . . . . . . . . . . . . . . . 16 = (.g𝐺)
141 mplcoe2.v . . . . . . . . . . . . . . . 16 𝑉 = (𝐼 mVar 𝑅)
14294, 3, 95, 96, 107, 50, 140, 141, 108, 135, 136mplcoe3 19514 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)), 1 , 0 )) = ((𝑌𝑧) (𝑉𝑧)))
143142oveq2d 6706 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))(.r𝑃)(𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)), 1 , 0 ))) = ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))(.r𝑃)((𝑌𝑧) (𝑉𝑧))))
144136adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) → (𝑌𝑧) ∈ ℕ0)
145 ifcl 4163 . . . . . . . . . . . . . . . . . . . 20 (((𝑌𝑧) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑖 = 𝑧, (𝑌𝑧), 0) ∈ ℕ0)
146144, 111, 145sylancl 695 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) → if(𝑖 = 𝑧, (𝑌𝑧), 0) ∈ ℕ0)
147 eqidd 2652 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)))
148 eqidd 2652 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)) = (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0)))
149107, 113, 146, 147, 148offval2 6956 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∘𝑓 + (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0))) = (𝑖𝐼 ↦ (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0))))
150110adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → (𝑌𝑖) ∈ ℕ0)
151150nn0cnd 11391 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → (𝑌𝑖) ∈ ℂ)
152151addid2d 10275 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → (0 + (𝑌𝑖)) = (𝑌𝑖))
153 elsni 4227 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ {𝑧} → 𝑖 = 𝑧)
154153adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → 𝑖 = 𝑧)
155 simprlr 820 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ¬ 𝑧𝑥)
156155ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → ¬ 𝑧𝑥)
157154, 156eqneltrd 2749 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → ¬ 𝑖𝑥)
158157iffalsed 4130 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖𝑥, (𝑌𝑖), 0) = 0)
159154iftrued 4127 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖 = 𝑧, (𝑌𝑧), 0) = (𝑌𝑧))
160154fveq2d 6233 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → (𝑌𝑖) = (𝑌𝑧))
161159, 160eqtr4d 2688 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖 = 𝑧, (𝑌𝑧), 0) = (𝑌𝑖))
162158, 161oveq12d 6708 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0)) = (0 + (𝑌𝑖)))
163 simpr 476 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → 𝑖 ∈ {𝑧})
164130, 163sseldi 3634 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → 𝑖 ∈ (𝑥 ∪ {𝑧}))
165164iftrued 4127 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0) = (𝑌𝑖))
166152, 162, 1653eqtr4d 2695 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ 𝑖 ∈ {𝑧}) → (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0)) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0))
167113adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖𝑥, (𝑌𝑖), 0) ∈ ℕ0)
168167nn0cnd 11391 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖𝑥, (𝑌𝑖), 0) ∈ ℂ)
169168addid1d 10274 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (if(𝑖𝑥, (𝑌𝑖), 0) + 0) = if(𝑖𝑥, (𝑌𝑖), 0))
170 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → ¬ 𝑖 ∈ {𝑧})
171 velsn 4226 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ {𝑧} ↔ 𝑖 = 𝑧)
172170, 171sylnib 317 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → ¬ 𝑖 = 𝑧)
173172iffalsed 4130 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖 = 𝑧, (𝑌𝑧), 0) = 0)
174173oveq2d 6706 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0)) = (if(𝑖𝑥, (𝑌𝑖), 0) + 0))
175 biorf 419 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑖 ∈ {𝑧} → (𝑖𝑥 ↔ (𝑖 ∈ {𝑧} ∨ 𝑖𝑥)))
176 elun 3786 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ (𝑖𝑥𝑖 ∈ {𝑧}))
177 orcom 401 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖𝑥𝑖 ∈ {𝑧}) ↔ (𝑖 ∈ {𝑧} ∨ 𝑖𝑥))
178176, 177bitri 264 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ (𝑖 ∈ {𝑧} ∨ 𝑖𝑥))
179175, 178syl6rbbr 279 . . . . . . . . . . . . . . . . . . . . . . 23 𝑖 ∈ {𝑧} → (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ 𝑖𝑥))
180179adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (𝑖 ∈ (𝑥 ∪ {𝑧}) ↔ 𝑖𝑥))
181180ifbid 4141 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0) = if(𝑖𝑥, (𝑌𝑖), 0))
182169, 174, 1813eqtr4d 2695 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) ∧ ¬ 𝑖 ∈ {𝑧}) → (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0)) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0))
183166, 182pm2.61dan 849 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑖𝐼) → (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0)) = if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0))
184183mpteq2dva 4777 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑖𝐼 ↦ (if(𝑖𝑥, (𝑌𝑖), 0) + if(𝑖 = 𝑧, (𝑌𝑧), 0))) = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)))
185149, 184eqtrd 2685 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∘𝑓 + (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0))) = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)))
186185eqeq2d 2661 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦 = ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∘𝑓 + (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0))) ↔ 𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0))))
187186ifbid 4141 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → if(𝑦 = ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∘𝑓 + (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0))), 1 , 0 ) = if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 ))
188187mpteq2dv 4778 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦𝐷 ↦ if(𝑦 = ((𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)) ∘𝑓 + (𝑖𝐼 ↦ if(𝑖 = 𝑧, (𝑌𝑧), 0))), 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )))
189139, 143, 1883eqtr3rd 2694 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))(.r𝑃)((𝑌𝑧) (𝑉𝑧))))
19050, 106mgpbas 18541 . . . . . . . . . . . . . 14 (Base‘𝑃) = (Base‘𝐺)
19150, 129mgpplusg 18539 . . . . . . . . . . . . . 14 (.r𝑃) = (+g𝐺)
192 eqid 2651 . . . . . . . . . . . . . 14 (Cntz‘𝐺) = (Cntz‘𝐺)
193 eqid 2651 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))) = (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))
19494mplring 19500 . . . . . . . . . . . . . . . . 17 ((𝐼𝑊𝑅 ∈ Ring) → 𝑃 ∈ Ring)
1952, 97, 194syl2anc 694 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ Ring)
19650ringmgp 18599 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Ring → 𝐺 ∈ Mnd)
197195, 196syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ Mnd)
198197adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝐺 ∈ Mnd)
1991adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑌𝐷)
200 mplcoe5.c . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)))
201 fveq2 6229 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → (𝑉𝑥) = (𝑉𝑎))
202201oveq2d 6706 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑦)(+g𝐺)(𝑉𝑎)))
203201oveq1d 6705 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑦)))
204202, 203eqeq12d 2666 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) ↔ ((𝑉𝑦)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑦))))
205 fveq2 6229 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑏 → (𝑉𝑦) = (𝑉𝑏))
206205oveq1d 6705 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → ((𝑉𝑦)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑏)(+g𝐺)(𝑉𝑎)))
207205oveq2d 6706 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → ((𝑉𝑎)(+g𝐺)(𝑉𝑦)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑏)))
208206, 207eqeq12d 2666 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → (((𝑉𝑦)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑦)) ↔ ((𝑉𝑏)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑏))))
209204, 208cbvral2v 3209 . . . . . . . . . . . . . . . . 17 (∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) ↔ ∀𝑎𝐼𝑏𝐼 ((𝑉𝑏)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑏)))
210200, 209sylib 208 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑎𝐼𝑏𝐼 ((𝑉𝑏)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑏)))
211210adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ∀𝑎𝐼𝑏𝐼 ((𝑉𝑏)(+g𝐺)(𝑉𝑎)) = ((𝑉𝑎)(+g𝐺)(𝑉𝑏)))
21294, 3, 95, 96, 107, 50, 140, 141, 108, 199, 211, 131mplcoe5lem 19515 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ran (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))))
213101, 131syl5ss 3647 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → 𝑥𝐼)
214213sselda 3636 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝑥) → 𝑘𝐼)
215197adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐼) → 𝐺 ∈ Mnd)
2167ffvelrnda 6399 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐼) → (𝑌𝑘) ∈ ℕ0)
2172adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐼) → 𝐼𝑊)
21897adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐼) → 𝑅 ∈ Ring)
219 simpr 476 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐼) → 𝑘𝐼)
22094, 141, 106, 217, 218, 219mvrcl 19497 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐼) → (𝑉𝑘) ∈ (Base‘𝑃))
221190, 140mulgnn0cl 17605 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Mnd ∧ (𝑌𝑘) ∈ ℕ0 ∧ (𝑉𝑘) ∈ (Base‘𝑃)) → ((𝑌𝑘) (𝑉𝑘)) ∈ (Base‘𝑃))
222215, 216, 220, 221syl3anc 1366 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐼) → ((𝑌𝑘) (𝑉𝑘)) ∈ (Base‘𝑃))
223222adantlr 751 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝐼) → ((𝑌𝑘) (𝑉𝑘)) ∈ (Base‘𝑃))
224214, 223syldan 486 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘𝑥) → ((𝑌𝑘) (𝑉𝑘)) ∈ (Base‘𝑃))
22594, 141, 106, 107, 108, 135mvrcl 19497 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝑉𝑧) ∈ (Base‘𝑃))
226190, 140mulgnn0cl 17605 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Mnd ∧ (𝑌𝑧) ∈ ℕ0 ∧ (𝑉𝑧) ∈ (Base‘𝑃)) → ((𝑌𝑧) (𝑉𝑧)) ∈ (Base‘𝑃))
227198, 136, 225, 226syl3anc 1366 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑌𝑧) (𝑉𝑧)) ∈ (Base‘𝑃))
228 fveq2 6229 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → (𝑌𝑘) = (𝑌𝑧))
229 fveq2 6229 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → (𝑉𝑘) = (𝑉𝑧))
230228, 229oveq12d 6708 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → ((𝑌𝑘) (𝑉𝑘)) = ((𝑌𝑧) (𝑉𝑧)))
231230adantl 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) ∧ 𝑘 = 𝑧) → ((𝑌𝑘) (𝑉𝑘)) = ((𝑌𝑧) (𝑉𝑧)))
232190, 191, 192, 193, 198, 118, 212, 224, 135, 155, 227, 231gsumzunsnd 18401 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))) = ((𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))(.r𝑃)((𝑌𝑧) (𝑉𝑧))))
233189, 232eqeq12d 2666 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 ))(.r𝑃)((𝑌𝑧) (𝑉𝑧))) = ((𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))(.r𝑃)((𝑌𝑧) (𝑉𝑧)))))
234105, 233syl5ibr 236 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐼)) → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘)))) → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))))))
235234expr 642 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧𝑥)) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → ((𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘)))) → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))))))
236235a2d 29 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧𝑥)) → (((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))))))
237104, 236syl5 34 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧𝑥)) → ((𝑥𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘)))))))
238237expcom 450 . . . . . . 7 ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) → (𝜑 → ((𝑥𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘))))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))))))))
239238a2d 29 . . . . . 6 ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) → ((𝜑 → (𝑥𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖𝑥, (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝑥 ↦ ((𝑌𝑘) (𝑉𝑘)))))) → (𝜑 → ((𝑥 ∪ {𝑧}) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑥 ∪ {𝑧}), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑌𝑘) (𝑉𝑘))))))))
24057, 69, 81, 93, 100, 239findcard2s 8242 . . . . 5 ((𝑌 “ ℕ) ∈ Fin → (𝜑 → ((𝑌 “ ℕ) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘)))))))
24134, 240mpcom 38 . . . 4 (𝜑 → ((𝑌 “ ℕ) ⊆ 𝐼 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘))))))
24233, 241mpd 15 . . 3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘)))))
24333resmptd 5487 . . . 4 (𝜑 → ((𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ↾ (𝑌 “ ℕ)) = (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘))))
244243oveq2d 6706 . . 3 (𝜑 → (𝐺 Σg ((𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ↾ (𝑌 “ ℕ))) = (𝐺 Σg (𝑘 ∈ (𝑌 “ ℕ) ↦ ((𝑌𝑘) (𝑉𝑘)))))
245 eqid 2651 . . . . 5 (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) = (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))
246222, 245fmptd 6425 . . . 4 (𝜑 → (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))):𝐼⟶(Base‘𝑃))
247 ssid 3657 . . . . . 6 𝐼𝐼
248247a1i 11 . . . . 5 (𝜑𝐼𝐼)
24994, 3, 95, 96, 2, 50, 140, 141, 97, 1, 200, 248mplcoe5lem 19515 . . . 4 (𝜑 → ran (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))))
2507, 16, 2, 18suppssr 7371 . . . . . . 7 ((𝜑𝑘 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → (𝑌𝑘) = 0)
251250oveq1d 6705 . . . . . 6 ((𝜑𝑘 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → ((𝑌𝑘) (𝑉𝑘)) = (0 (𝑉𝑘)))
252 eldifi 3765 . . . . . . . 8 (𝑘 ∈ (𝐼 ∖ (𝑌 “ ℕ)) → 𝑘𝐼)
253252, 220sylan2 490 . . . . . . 7 ((𝜑𝑘 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → (𝑉𝑘) ∈ (Base‘𝑃))
254190, 52, 140mulg0 17593 . . . . . . 7 ((𝑉𝑘) ∈ (Base‘𝑃) → (0 (𝑉𝑘)) = (1r𝑃))
255253, 254syl 17 . . . . . 6 ((𝜑𝑘 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → (0 (𝑉𝑘)) = (1r𝑃))
256251, 255eqtrd 2685 . . . . 5 ((𝜑𝑘 ∈ (𝐼 ∖ (𝑌 “ ℕ))) → ((𝑌𝑘) (𝑉𝑘)) = (1r𝑃))
257256, 2suppss2 7374 . . . 4 (𝜑 → ((𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) supp (1r𝑃)) ⊆ (𝑌 “ ℕ))
258 mptexg 6525 . . . . . 6 (𝐼𝑊 → (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ∈ V)
2592, 258syl 17 . . . . 5 (𝜑 → (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ∈ V)
260 funmpt 5964 . . . . . 6 Fun (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))
261260a1i 11 . . . . 5 (𝜑 → Fun (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))))
262 fvexd 6241 . . . . 5 (𝜑 → (1r𝑃) ∈ V)
263 suppssfifsupp 8331 . . . . 5 ((((𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ∈ V ∧ Fun (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ∧ (1r𝑃) ∈ V) ∧ ((𝑌 “ ℕ) ∈ Fin ∧ ((𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) supp (1r𝑃)) ⊆ (𝑌 “ ℕ))) → (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) finSupp (1r𝑃))
264259, 261, 262, 34, 257, 263syl32anc 1374 . . . 4 (𝜑 → (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) finSupp (1r𝑃))
265190, 52, 192, 197, 2, 246, 249, 257, 264gsumzres 18356 . . 3 (𝜑 → (𝐺 Σg ((𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘))) ↾ (𝑌 “ ℕ))) = (𝐺 Σg (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))))
266242, 244, 2653eqtr2d 2691 . 2 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑖𝐼 ↦ if(𝑖 ∈ (𝑌 “ ℕ), (𝑌𝑖), 0)), 1 , 0 )) = (𝐺 Σg (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))))
26729, 266eqtrd 2685 1 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1523  wcel 2030  wral 2941  {crab 2945  Vcvv 3231  cdif 3604  cun 3605  wss 3607  c0 3948  ifcif 4119  {csn 4210   class class class wbr 4685  cmpt 4762   × cxp 5141  ccnv 5142  dom cdm 5143  cres 5145  cima 5146  Fun wfun 5920  wf 5922  cfv 5926  (class class class)co 6690  𝑓 cof 6937   supp csupp 7340  𝑚 cmap 7899  Fincfn 7997   finSupp cfsupp 8316  0cc0 9974   + caddc 9977  cn 11058  0cn0 11330  Basecbs 15904  +gcplusg 15988  .rcmulr 15989  0gc0g 16147   Σg cgsu 16148  Mndcmnd 17341  .gcmg 17587  Cntzccntz 17794  mulGrpcmgp 18535  1rcur 18547  Ringcrg 18593   mVar cmvr 19400   mPoly cmpl 19401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-tset 16007  df-0g 16149  df-gsum 16150  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-mulg 17588  df-subg 17638  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-srg 18552  df-ring 18595  df-subrg 18826  df-psr 19404  df-mvr 19405  df-mpl 19406
This theorem is referenced by:  mplcoe2  19517  ply1coe  19714
  Copyright terms: Public domain W3C validator