![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mplcoe2 | Structured version Visualization version GIF version |
Description: Decompose a monomial into a finite product of powers of variables. (The assumption that 𝑅 is a commutative ring is not strictly necessary, because the submonoid of monomials is in the center of the multiplicative monoid of polynomials, but it simplifies the proof.) (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2019.) |
Ref | Expression |
---|---|
mplcoe1.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mplcoe1.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
mplcoe1.z | ⊢ 0 = (0g‘𝑅) |
mplcoe1.o | ⊢ 1 = (1r‘𝑅) |
mplcoe1.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
mplcoe2.g | ⊢ 𝐺 = (mulGrp‘𝑃) |
mplcoe2.m | ⊢ ↑ = (.g‘𝐺) |
mplcoe2.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
mplcoe2.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
mplcoe2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐷) |
Ref | Expression |
---|---|
mplcoe2 | ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplcoe1.p | . 2 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
2 | mplcoe1.d | . 2 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
3 | mplcoe1.z | . 2 ⊢ 0 = (0g‘𝑅) | |
4 | mplcoe1.o | . 2 ⊢ 1 = (1r‘𝑅) | |
5 | mplcoe1.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
6 | mplcoe2.g | . 2 ⊢ 𝐺 = (mulGrp‘𝑃) | |
7 | mplcoe2.m | . 2 ⊢ ↑ = (.g‘𝐺) | |
8 | mplcoe2.v | . 2 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
9 | mplcoe2.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
10 | crngring 18766 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
12 | mplcoe2.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐷) | |
13 | 1 | mplcrng 19668 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ CRing) → 𝑃 ∈ CRing) |
14 | 5, 9, 13 | syl2anc 573 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ CRing) |
15 | 14 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → 𝑃 ∈ CRing) |
16 | eqid 2771 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
17 | 5 | adantr 466 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → 𝐼 ∈ 𝑊) |
18 | 11 | adantr 466 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → 𝑅 ∈ Ring) |
19 | simprr 756 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → 𝑦 ∈ 𝐼) | |
20 | 1, 8, 16, 17, 18, 19 | mvrcl 19664 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → (𝑉‘𝑦) ∈ (Base‘𝑃)) |
21 | simprl 754 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → 𝑥 ∈ 𝐼) | |
22 | 1, 8, 16, 17, 18, 21 | mvrcl 19664 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → (𝑉‘𝑥) ∈ (Base‘𝑃)) |
23 | eqid 2771 | . . . . . . 7 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
24 | 6, 23 | mgpplusg 18701 | . . . . . 6 ⊢ (.r‘𝑃) = (+g‘𝐺) |
25 | 24 | eqcomi 2780 | . . . . 5 ⊢ (+g‘𝐺) = (.r‘𝑃) |
26 | 16, 25 | crngcom 18770 | . . . 4 ⊢ ((𝑃 ∈ CRing ∧ (𝑉‘𝑦) ∈ (Base‘𝑃) ∧ (𝑉‘𝑥) ∈ (Base‘𝑃)) → ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦))) |
27 | 15, 20, 22, 26 | syl3anc 1476 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦))) |
28 | 27 | ralrimivva 3120 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦))) |
29 | 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 28 | mplcoe5 19683 | 1 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 {crab 3065 ifcif 4225 ↦ cmpt 4863 ◡ccnv 5248 “ cima 5252 ‘cfv 6031 (class class class)co 6793 ↑𝑚 cmap 8009 Fincfn 8109 ℕcn 11222 ℕ0cn0 11494 Basecbs 16064 +gcplusg 16149 .rcmulr 16150 0gc0g 16308 Σg cgsu 16309 .gcmg 17748 mulGrpcmgp 18697 1rcur 18709 Ringcrg 18755 CRingccrg 18756 mVar cmvr 19567 mPoly cmpl 19568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-of 7044 df-ofr 7045 df-om 7213 df-1st 7315 df-2nd 7316 df-supp 7447 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-er 7896 df-map 8011 df-pm 8012 df-ixp 8063 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fsupp 8432 df-oi 8571 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-uz 11889 df-fz 12534 df-fzo 12674 df-seq 13009 df-hash 13322 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-sca 16165 df-vsca 16166 df-tset 16168 df-0g 16310 df-gsum 16311 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-mhm 17543 df-submnd 17544 df-grp 17633 df-minusg 17634 df-mulg 17749 df-subg 17799 df-ghm 17866 df-cntz 17957 df-cmn 18402 df-abl 18403 df-mgp 18698 df-ur 18710 df-srg 18714 df-ring 18757 df-cring 18758 df-subrg 18988 df-psr 19571 df-mvr 19572 df-mpl 19573 |
This theorem is referenced by: mplbas2 19685 |
Copyright terms: Public domain | W3C validator |