MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplcoe2 Structured version   Visualization version   GIF version

Theorem mplcoe2 19684
Description: Decompose a monomial into a finite product of powers of variables. (The assumption that 𝑅 is a commutative ring is not strictly necessary, because the submonoid of monomials is in the center of the multiplicative monoid of polynomials, but it simplifies the proof.) (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2019.)
Hypotheses
Ref Expression
mplcoe1.p 𝑃 = (𝐼 mPoly 𝑅)
mplcoe1.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplcoe1.z 0 = (0g𝑅)
mplcoe1.o 1 = (1r𝑅)
mplcoe1.i (𝜑𝐼𝑊)
mplcoe2.g 𝐺 = (mulGrp‘𝑃)
mplcoe2.m = (.g𝐺)
mplcoe2.v 𝑉 = (𝐼 mVar 𝑅)
mplcoe2.r (𝜑𝑅 ∈ CRing)
mplcoe2.y (𝜑𝑌𝐷)
Assertion
Ref Expression
mplcoe2 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))))
Distinct variable groups:   ,𝑘,𝑦   1 ,𝑘,𝑦   𝑘,𝐺   𝑓,𝑘,𝑦,𝐼   𝜑,𝑘,𝑦   𝑅,𝑓,𝑦   𝐷,𝑘,𝑦   𝑃,𝑘   𝑘,𝑉   0 ,𝑓,𝑘,𝑦   𝑓,𝑌,𝑘,𝑦   𝑘,𝑊,𝑦   𝑦,𝐺   𝑦,𝑉   𝑦,
Allowed substitution hints:   𝜑(𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑘)   1 (𝑓)   (𝑓)   𝐺(𝑓)   𝑉(𝑓)   𝑊(𝑓)

Proof of Theorem mplcoe2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mplcoe1.p . 2 𝑃 = (𝐼 mPoly 𝑅)
2 mplcoe1.d . 2 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
3 mplcoe1.z . 2 0 = (0g𝑅)
4 mplcoe1.o . 2 1 = (1r𝑅)
5 mplcoe1.i . 2 (𝜑𝐼𝑊)
6 mplcoe2.g . 2 𝐺 = (mulGrp‘𝑃)
7 mplcoe2.m . 2 = (.g𝐺)
8 mplcoe2.v . 2 𝑉 = (𝐼 mVar 𝑅)
9 mplcoe2.r . . 3 (𝜑𝑅 ∈ CRing)
10 crngring 18766 . . 3 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
119, 10syl 17 . 2 (𝜑𝑅 ∈ Ring)
12 mplcoe2.y . 2 (𝜑𝑌𝐷)
131mplcrng 19668 . . . . . 6 ((𝐼𝑊𝑅 ∈ CRing) → 𝑃 ∈ CRing)
145, 9, 13syl2anc 573 . . . . 5 (𝜑𝑃 ∈ CRing)
1514adantr 466 . . . 4 ((𝜑 ∧ (𝑥𝐼𝑦𝐼)) → 𝑃 ∈ CRing)
16 eqid 2771 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
175adantr 466 . . . . 5 ((𝜑 ∧ (𝑥𝐼𝑦𝐼)) → 𝐼𝑊)
1811adantr 466 . . . . 5 ((𝜑 ∧ (𝑥𝐼𝑦𝐼)) → 𝑅 ∈ Ring)
19 simprr 756 . . . . 5 ((𝜑 ∧ (𝑥𝐼𝑦𝐼)) → 𝑦𝐼)
201, 8, 16, 17, 18, 19mvrcl 19664 . . . 4 ((𝜑 ∧ (𝑥𝐼𝑦𝐼)) → (𝑉𝑦) ∈ (Base‘𝑃))
21 simprl 754 . . . . 5 ((𝜑 ∧ (𝑥𝐼𝑦𝐼)) → 𝑥𝐼)
221, 8, 16, 17, 18, 21mvrcl 19664 . . . 4 ((𝜑 ∧ (𝑥𝐼𝑦𝐼)) → (𝑉𝑥) ∈ (Base‘𝑃))
23 eqid 2771 . . . . . . 7 (.r𝑃) = (.r𝑃)
246, 23mgpplusg 18701 . . . . . 6 (.r𝑃) = (+g𝐺)
2524eqcomi 2780 . . . . 5 (+g𝐺) = (.r𝑃)
2616, 25crngcom 18770 . . . 4 ((𝑃 ∈ CRing ∧ (𝑉𝑦) ∈ (Base‘𝑃) ∧ (𝑉𝑥) ∈ (Base‘𝑃)) → ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)))
2715, 20, 22, 26syl3anc 1476 . . 3 ((𝜑 ∧ (𝑥𝐼𝑦𝐼)) → ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)))
2827ralrimivva 3120 . 2 (𝜑 → ∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)))
291, 2, 3, 4, 5, 6, 7, 8, 11, 12, 28mplcoe5 19683 1 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  {crab 3065  ifcif 4225  cmpt 4863  ccnv 5248  cima 5252  cfv 6031  (class class class)co 6793  𝑚 cmap 8009  Fincfn 8109  cn 11222  0cn0 11494  Basecbs 16064  +gcplusg 16149  .rcmulr 16150  0gc0g 16308   Σg cgsu 16309  .gcmg 17748  mulGrpcmgp 18697  1rcur 18709  Ringcrg 18755  CRingccrg 18756   mVar cmvr 19567   mPoly cmpl 19568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-ofr 7045  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-sca 16165  df-vsca 16166  df-tset 16168  df-0g 16310  df-gsum 16311  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-submnd 17544  df-grp 17633  df-minusg 17634  df-mulg 17749  df-subg 17799  df-ghm 17866  df-cntz 17957  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-srg 18714  df-ring 18757  df-cring 18758  df-subrg 18988  df-psr 19571  df-mvr 19572  df-mpl 19573
This theorem is referenced by:  mplbas2  19685
  Copyright terms: Public domain W3C validator