![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpjao3dan | Structured version Visualization version GIF version |
Description: Eliminate a three-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
Ref | Expression |
---|---|
mpjao3dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
mpjao3dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
mpjao3dan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
mpjao3dan.4 | ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) |
Ref | Expression |
---|---|
mpjao3dan | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpjao3dan.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | mpjao3dan.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
3 | 1, 2 | jaodan 942 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
4 | mpjao3dan.3 | . 2 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
5 | mpjao3dan.4 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) | |
6 | df-3or 1072 | . . 3 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜏) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜏)) | |
7 | 5, 6 | sylib 208 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ∨ 𝜏)) |
8 | 3, 4, 7 | mpjaodan 943 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∨ wo 836 ∨ w3o 1070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 |
This theorem is referenced by: wemaplem2 8612 r1val1 8817 xleadd1a 12288 xlt2add 12295 xmullem 12299 xmulgt0 12318 xmulasslem3 12321 xlemul1a 12323 xadddilem 12329 xadddi 12330 xadddi2 12332 isxmet2d 22352 icccvx 22969 ivthicc 23446 mbfmulc2lem 23634 c1lip1 23980 dvivth 23993 reeff1o 24421 coseq00topi 24475 tanabsge 24479 logcnlem3 24611 atantan 24871 atanbnd 24874 cvxcl 24932 ostthlem1 25537 iscgrglt 25630 tgdim01ln 25680 lnxfr 25682 lnext 25683 tgfscgr 25684 tglineeltr 25747 colmid 25804 prodtp 29913 xrpxdivcld 29983 archirngz 30083 archiabllem1b 30086 esumcst 30465 sgnmulsgn 30951 sgnmulsgp 30952 hgt750lemb 31074 fnwe2lem3 38148 |
Copyright terms: Public domain | W3C validator |