![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpfpf1 | Structured version Visualization version GIF version |
Description: Convert a multivariate polynomial function to univariate. (Contributed by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
pf1rcl.q | ⊢ 𝑄 = ran (eval1‘𝑅) |
pf1f.b | ⊢ 𝐵 = (Base‘𝑅) |
mpfpf1.q | ⊢ 𝐸 = ran (1𝑜 eval 𝑅) |
Ref | Expression |
---|---|
mpfpf1 | ⊢ (𝐹 ∈ 𝐸 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦}))) ∈ 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpfpf1.q | . . . . 5 ⊢ 𝐸 = ran (1𝑜 eval 𝑅) | |
2 | eqid 2651 | . . . . . . 7 ⊢ (1𝑜 eval 𝑅) = (1𝑜 eval 𝑅) | |
3 | pf1f.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
4 | 2, 3 | evlval 19572 | . . . . . 6 ⊢ (1𝑜 eval 𝑅) = ((1𝑜 evalSub 𝑅)‘𝐵) |
5 | 4 | rneqi 5384 | . . . . 5 ⊢ ran (1𝑜 eval 𝑅) = ran ((1𝑜 evalSub 𝑅)‘𝐵) |
6 | 1, 5 | eqtri 2673 | . . . 4 ⊢ 𝐸 = ran ((1𝑜 evalSub 𝑅)‘𝐵) |
7 | 6 | mpfrcl 19566 | . . 3 ⊢ (𝐹 ∈ 𝐸 → (1𝑜 ∈ V ∧ 𝑅 ∈ CRing ∧ 𝐵 ∈ (SubRing‘𝑅))) |
8 | 7 | simp2d 1094 | . 2 ⊢ (𝐹 ∈ 𝐸 → 𝑅 ∈ CRing) |
9 | id 22 | . . . 4 ⊢ (𝐹 ∈ 𝐸 → 𝐹 ∈ 𝐸) | |
10 | 9, 1 | syl6eleq 2740 | . . 3 ⊢ (𝐹 ∈ 𝐸 → 𝐹 ∈ ran (1𝑜 eval 𝑅)) |
11 | 1on 7612 | . . . . 5 ⊢ 1𝑜 ∈ On | |
12 | eqid 2651 | . . . . . 6 ⊢ (1𝑜 mPoly 𝑅) = (1𝑜 mPoly 𝑅) | |
13 | eqid 2651 | . . . . . 6 ⊢ (𝑅 ↑s (𝐵 ↑𝑚 1𝑜)) = (𝑅 ↑s (𝐵 ↑𝑚 1𝑜)) | |
14 | 2, 3, 12, 13 | evlrhm 19573 | . . . . 5 ⊢ ((1𝑜 ∈ On ∧ 𝑅 ∈ CRing) → (1𝑜 eval 𝑅) ∈ ((1𝑜 mPoly 𝑅) RingHom (𝑅 ↑s (𝐵 ↑𝑚 1𝑜)))) |
15 | 11, 8, 14 | sylancr 696 | . . . 4 ⊢ (𝐹 ∈ 𝐸 → (1𝑜 eval 𝑅) ∈ ((1𝑜 mPoly 𝑅) RingHom (𝑅 ↑s (𝐵 ↑𝑚 1𝑜)))) |
16 | eqid 2651 | . . . . . 6 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
17 | eqid 2651 | . . . . . 6 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
18 | eqid 2651 | . . . . . 6 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑅)) | |
19 | 16, 17, 18 | ply1bas 19613 | . . . . 5 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(1𝑜 mPoly 𝑅)) |
20 | eqid 2651 | . . . . 5 ⊢ (Base‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜))) = (Base‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜))) | |
21 | 19, 20 | rhmf 18774 | . . . 4 ⊢ ((1𝑜 eval 𝑅) ∈ ((1𝑜 mPoly 𝑅) RingHom (𝑅 ↑s (𝐵 ↑𝑚 1𝑜))) → (1𝑜 eval 𝑅):(Base‘(Poly1‘𝑅))⟶(Base‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜)))) |
22 | ffn 6083 | . . . 4 ⊢ ((1𝑜 eval 𝑅):(Base‘(Poly1‘𝑅))⟶(Base‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜))) → (1𝑜 eval 𝑅) Fn (Base‘(Poly1‘𝑅))) | |
23 | fvelrnb 6282 | . . . 4 ⊢ ((1𝑜 eval 𝑅) Fn (Base‘(Poly1‘𝑅)) → (𝐹 ∈ ran (1𝑜 eval 𝑅) ↔ ∃𝑥 ∈ (Base‘(Poly1‘𝑅))((1𝑜 eval 𝑅)‘𝑥) = 𝐹)) | |
24 | 15, 21, 22, 23 | 4syl 19 | . . 3 ⊢ (𝐹 ∈ 𝐸 → (𝐹 ∈ ran (1𝑜 eval 𝑅) ↔ ∃𝑥 ∈ (Base‘(Poly1‘𝑅))((1𝑜 eval 𝑅)‘𝑥) = 𝐹)) |
25 | 10, 24 | mpbid 222 | . 2 ⊢ (𝐹 ∈ 𝐸 → ∃𝑥 ∈ (Base‘(Poly1‘𝑅))((1𝑜 eval 𝑅)‘𝑥) = 𝐹) |
26 | eqid 2651 | . . . . . 6 ⊢ (eval1‘𝑅) = (eval1‘𝑅) | |
27 | 26, 2, 3, 12, 19 | evl1val 19741 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1‘𝑅))) → ((eval1‘𝑅)‘𝑥) = (((1𝑜 eval 𝑅)‘𝑥) ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) |
28 | eqid 2651 | . . . . . . . . 9 ⊢ (𝑅 ↑s 𝐵) = (𝑅 ↑s 𝐵) | |
29 | 26, 16, 28, 3 | evl1rhm 19744 | . . . . . . . 8 ⊢ (𝑅 ∈ CRing → (eval1‘𝑅) ∈ ((Poly1‘𝑅) RingHom (𝑅 ↑s 𝐵))) |
30 | eqid 2651 | . . . . . . . . 9 ⊢ (Base‘(𝑅 ↑s 𝐵)) = (Base‘(𝑅 ↑s 𝐵)) | |
31 | 18, 30 | rhmf 18774 | . . . . . . . 8 ⊢ ((eval1‘𝑅) ∈ ((Poly1‘𝑅) RingHom (𝑅 ↑s 𝐵)) → (eval1‘𝑅):(Base‘(Poly1‘𝑅))⟶(Base‘(𝑅 ↑s 𝐵))) |
32 | ffn 6083 | . . . . . . . 8 ⊢ ((eval1‘𝑅):(Base‘(Poly1‘𝑅))⟶(Base‘(𝑅 ↑s 𝐵)) → (eval1‘𝑅) Fn (Base‘(Poly1‘𝑅))) | |
33 | 29, 31, 32 | 3syl 18 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → (eval1‘𝑅) Fn (Base‘(Poly1‘𝑅))) |
34 | fnfvelrn 6396 | . . . . . . 7 ⊢ (((eval1‘𝑅) Fn (Base‘(Poly1‘𝑅)) ∧ 𝑥 ∈ (Base‘(Poly1‘𝑅))) → ((eval1‘𝑅)‘𝑥) ∈ ran (eval1‘𝑅)) | |
35 | 33, 34 | sylan 487 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1‘𝑅))) → ((eval1‘𝑅)‘𝑥) ∈ ran (eval1‘𝑅)) |
36 | pf1rcl.q | . . . . . 6 ⊢ 𝑄 = ran (eval1‘𝑅) | |
37 | 35, 36 | syl6eleqr 2741 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1‘𝑅))) → ((eval1‘𝑅)‘𝑥) ∈ 𝑄) |
38 | 27, 37 | eqeltrrd 2731 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1‘𝑅))) → (((1𝑜 eval 𝑅)‘𝑥) ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦}))) ∈ 𝑄) |
39 | coeq1 5312 | . . . . 5 ⊢ (((1𝑜 eval 𝑅)‘𝑥) = 𝐹 → (((1𝑜 eval 𝑅)‘𝑥) ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦}))) = (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) | |
40 | 39 | eleq1d 2715 | . . . 4 ⊢ (((1𝑜 eval 𝑅)‘𝑥) = 𝐹 → ((((1𝑜 eval 𝑅)‘𝑥) ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦}))) ∈ 𝑄 ↔ (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦}))) ∈ 𝑄)) |
41 | 38, 40 | syl5ibcom 235 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1‘𝑅))) → (((1𝑜 eval 𝑅)‘𝑥) = 𝐹 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦}))) ∈ 𝑄)) |
42 | 41 | rexlimdva 3060 | . 2 ⊢ (𝑅 ∈ CRing → (∃𝑥 ∈ (Base‘(Poly1‘𝑅))((1𝑜 eval 𝑅)‘𝑥) = 𝐹 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦}))) ∈ 𝑄)) |
43 | 8, 25, 42 | sylc 65 | 1 ⊢ (𝐹 ∈ 𝐸 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦}))) ∈ 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∃wrex 2942 Vcvv 3231 {csn 4210 ↦ cmpt 4762 × cxp 5141 ran crn 5144 ∘ ccom 5147 Oncon0 5761 Fn wfn 5921 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 1𝑜c1o 7598 ↑𝑚 cmap 7899 Basecbs 15904 ↑s cpws 16154 CRingccrg 18594 RingHom crh 18760 SubRingcsubrg 18824 mPoly cmpl 19401 evalSub ces 19552 eval cevl 19553 PwSer1cps1 19593 Poly1cpl1 19595 eval1ce1 19727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-ofr 6940 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-sup 8389 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-fz 12365 df-fzo 12505 df-seq 12842 df-hash 13158 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-hom 16013 df-cco 16014 df-0g 16149 df-gsum 16150 df-prds 16155 df-pws 16157 df-mre 16293 df-mrc 16294 df-acs 16296 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-mhm 17382 df-submnd 17383 df-grp 17472 df-minusg 17473 df-sbg 17474 df-mulg 17588 df-subg 17638 df-ghm 17705 df-cntz 17796 df-cmn 18241 df-abl 18242 df-mgp 18536 df-ur 18548 df-srg 18552 df-ring 18595 df-cring 18596 df-rnghom 18763 df-subrg 18826 df-lmod 18913 df-lss 18981 df-lsp 19020 df-assa 19360 df-asp 19361 df-ascl 19362 df-psr 19404 df-mvr 19405 df-mpl 19406 df-opsr 19408 df-evls 19554 df-evl 19555 df-psr1 19598 df-ply1 19600 df-evl1 19729 |
This theorem is referenced by: pf1ind 19767 |
Copyright terms: Public domain | W3C validator |