![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpfconst | Structured version Visualization version GIF version |
Description: Constants are multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
mpfconst.b | ⊢ 𝐵 = (Base‘𝑆) |
mpfconst.q | ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) |
mpfconst.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mpfconst.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
mpfconst.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
mpfconst.x | ⊢ (𝜑 → 𝑋 ∈ 𝑅) |
Ref | Expression |
---|---|
mpfconst | ⊢ (𝜑 → ((𝐵 ↑𝑚 𝐼) × {𝑋}) ∈ 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2761 | . . . 4 ⊢ ((𝐼 evalSub 𝑆)‘𝑅) = ((𝐼 evalSub 𝑆)‘𝑅) | |
2 | eqid 2761 | . . . 4 ⊢ (𝐼 mPoly (𝑆 ↾s 𝑅)) = (𝐼 mPoly (𝑆 ↾s 𝑅)) | |
3 | eqid 2761 | . . . 4 ⊢ (𝑆 ↾s 𝑅) = (𝑆 ↾s 𝑅) | |
4 | mpfconst.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
5 | eqid 2761 | . . . 4 ⊢ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))) = (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))) | |
6 | mpfconst.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
7 | mpfconst.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
8 | mpfconst.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
9 | mpfconst.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑅) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | evlssca 19745 | . . 3 ⊢ (𝜑 → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑋)) = ((𝐵 ↑𝑚 𝐼) × {𝑋})) |
11 | eqid 2761 | . . . . . . 7 ⊢ (𝑆 ↑s (𝐵 ↑𝑚 𝐼)) = (𝑆 ↑s (𝐵 ↑𝑚 𝐼)) | |
12 | 1, 2, 3, 11, 4 | evlsrhm 19744 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑𝑚 𝐼)))) |
13 | 6, 7, 8, 12 | syl3anc 1477 | . . . . 5 ⊢ (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑𝑚 𝐼)))) |
14 | eqid 2761 | . . . . . 6 ⊢ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) = (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) | |
15 | eqid 2761 | . . . . . 6 ⊢ (Base‘(𝑆 ↑s (𝐵 ↑𝑚 𝐼))) = (Base‘(𝑆 ↑s (𝐵 ↑𝑚 𝐼))) | |
16 | 14, 15 | rhmf 18949 | . . . . 5 ⊢ (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s (𝐵 ↑𝑚 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))⟶(Base‘(𝑆 ↑s (𝐵 ↑𝑚 𝐼)))) |
17 | ffn 6207 | . . . . 5 ⊢ (((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))⟶(Base‘(𝑆 ↑s (𝐵 ↑𝑚 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) | |
18 | 13, 16, 17 | 3syl 18 | . . . 4 ⊢ (𝜑 → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
19 | 3 | subrgring 19006 | . . . . . . 7 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (𝑆 ↾s 𝑅) ∈ Ring) |
20 | 8, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑆 ↾s 𝑅) ∈ Ring) |
21 | eqid 2761 | . . . . . . 7 ⊢ (Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))) = (Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))) | |
22 | 2 | mplring 19675 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ (𝑆 ↾s 𝑅) ∈ Ring) → (𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ Ring) |
23 | 2 | mpllmod 19674 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ (𝑆 ↾s 𝑅) ∈ Ring) → (𝐼 mPoly (𝑆 ↾s 𝑅)) ∈ LMod) |
24 | eqid 2761 | . . . . . . 7 ⊢ (Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) = (Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) | |
25 | 5, 21, 22, 23, 24, 14 | asclf 19560 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ (𝑆 ↾s 𝑅) ∈ Ring) → (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
26 | 6, 20, 25 | syl2anc 696 | . . . . 5 ⊢ (𝜑 → (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))):(Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))⟶(Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
27 | 4 | subrgss 19004 | . . . . . . . 8 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐵) |
28 | 3, 4 | ressbas2 16154 | . . . . . . . 8 ⊢ (𝑅 ⊆ 𝐵 → 𝑅 = (Base‘(𝑆 ↾s 𝑅))) |
29 | 8, 27, 28 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → 𝑅 = (Base‘(𝑆 ↾s 𝑅))) |
30 | ovexd 6845 | . . . . . . . . 9 ⊢ (𝜑 → (𝑆 ↾s 𝑅) ∈ V) | |
31 | 2, 6, 30 | mplsca 19668 | . . . . . . . 8 ⊢ (𝜑 → (𝑆 ↾s 𝑅) = (Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
32 | 31 | fveq2d 6358 | . . . . . . 7 ⊢ (𝜑 → (Base‘(𝑆 ↾s 𝑅)) = (Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))) |
33 | 29, 32 | eqtrd 2795 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))) |
34 | 9, 33 | eleqtrd 2842 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (Base‘(Scalar‘(𝐼 mPoly (𝑆 ↾s 𝑅))))) |
35 | 26, 34 | ffvelrnd 6525 | . . . 4 ⊢ (𝜑 → ((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑋) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
36 | fnfvelrn 6521 | . . . 4 ⊢ ((((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅))) ∧ ((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑋) ∈ (Base‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑋)) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) | |
37 | 18, 35, 36 | syl2anc 696 | . . 3 ⊢ (𝜑 → (((𝐼 evalSub 𝑆)‘𝑅)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))‘𝑋)) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) |
38 | 10, 37 | eqeltrrd 2841 | . 2 ⊢ (𝜑 → ((𝐵 ↑𝑚 𝐼) × {𝑋}) ∈ ran ((𝐼 evalSub 𝑆)‘𝑅)) |
39 | mpfconst.q | . 2 ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) | |
40 | 38, 39 | syl6eleqr 2851 | 1 ⊢ (𝜑 → ((𝐵 ↑𝑚 𝐼) × {𝑋}) ∈ 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 Vcvv 3341 ⊆ wss 3716 {csn 4322 × cxp 5265 ran crn 5268 Fn wfn 6045 ⟶wf 6046 ‘cfv 6050 (class class class)co 6815 ↑𝑚 cmap 8026 Basecbs 16080 ↾s cress 16081 Scalarcsca 16167 ↑s cpws 16330 Ringcrg 18768 CRingccrg 18769 RingHom crh 18935 SubRingcsubrg 18999 algSccascl 19534 mPoly cmpl 19576 evalSub ces 19727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-inf2 8714 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-iin 4676 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-se 5227 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-isom 6059 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-of 7064 df-ofr 7065 df-om 7233 df-1st 7335 df-2nd 7336 df-supp 7466 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-2o 7732 df-oadd 7735 df-er 7914 df-map 8028 df-pm 8029 df-ixp 8078 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-fsupp 8444 df-sup 8516 df-oi 8583 df-card 8976 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-2 11292 df-3 11293 df-4 11294 df-5 11295 df-6 11296 df-7 11297 df-8 11298 df-9 11299 df-n0 11506 df-z 11591 df-dec 11707 df-uz 11901 df-fz 12541 df-fzo 12681 df-seq 13017 df-hash 13333 df-struct 16082 df-ndx 16083 df-slot 16084 df-base 16086 df-sets 16087 df-ress 16088 df-plusg 16177 df-mulr 16178 df-sca 16180 df-vsca 16181 df-ip 16182 df-tset 16183 df-ple 16184 df-ds 16187 df-hom 16189 df-cco 16190 df-0g 16325 df-gsum 16326 df-prds 16331 df-pws 16333 df-mre 16469 df-mrc 16470 df-acs 16472 df-mgm 17464 df-sgrp 17506 df-mnd 17517 df-mhm 17557 df-submnd 17558 df-grp 17647 df-minusg 17648 df-sbg 17649 df-mulg 17763 df-subg 17813 df-ghm 17880 df-cntz 17971 df-cmn 18416 df-abl 18417 df-mgp 18711 df-ur 18723 df-srg 18727 df-ring 18770 df-cring 18771 df-rnghom 18938 df-subrg 19001 df-lmod 19088 df-lss 19156 df-lsp 19195 df-assa 19535 df-asp 19536 df-ascl 19537 df-psr 19579 df-mvr 19580 df-mpl 19581 df-evls 19729 |
This theorem is referenced by: mzpmfp 37831 |
Copyright terms: Public domain | W3C validator |