![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpd3an3 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
Ref | Expression |
---|---|
mpd3an3.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
mpd3an3.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpd3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpd3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | mpd3an3.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expa 1284 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | mpdan 703 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1056 |
This theorem is referenced by: stoic2b 1740 elovmpt2 6921 f1oeng 8016 wdomimag 8533 cdaval 9030 gruuni 9660 genpv 9859 infssuzle 11809 fzrevral3 12465 flflp1 12648 subsq2 13013 brfi1ind 13319 opfi1ind 13322 ccatws1ls 13455 swrdrlen 13481 swrd0swrdid 13510 2cshwid 13606 caubnd 14142 dvdsmul1 15050 dvdsmul2 15051 hashbcval 15753 setsvalg 15934 ressval 15974 restval 16134 mrelatglb0 17232 imasmnd2 17374 qusinv 17700 ghminv 17714 symgov 17856 gexod 18047 lsmvalx 18100 ringrz 18634 imasring 18665 irredneg 18756 evlrhm 19573 gsumsmonply1 19721 ocvin 20066 frlmiscvec 20236 mat1mhm 20338 marrepfval 20414 marrepval0 20415 marepvfval 20419 marepvval0 20420 1elcpmat 20568 m2cpminv0 20614 idpm2idmp 20654 chfacfscmulgsum 20713 chfacfpmmulgsum 20717 restin 21018 qtopval 21546 elqtop3 21554 elfm3 21801 flimval 21814 nmge0 22468 nmeq0 22469 nminv 22472 nmo0 22586 0nghm 22592 coemulhi 24055 isosctrlem2 24594 divsqrtsumlem 24751 2lgsoddprmlem4 25185 0uhgrrusgr 26530 frgruhgr0v 27243 nvge0 27656 nvnd 27671 dip0r 27700 dip0l 27701 nmoo0 27774 hi2eq 28090 resvval 29955 unitdivcld 30075 signspval 30757 ltflcei 33527 elghomlem1OLD 33814 rngorz 33852 rngonegmn1l 33870 rngonegmn1r 33871 igenval 33990 xrnidresex 34305 xrncnvepresex 34306 lfl0 34670 olj01 34830 olm11 34832 hl2at 35009 pmapeq0 35370 trlcl 35769 trlle 35789 tendoid 36378 tendo0plr 36397 tendoipl2 36403 erngmul 36411 erngmul-rN 36419 dvamulr 36617 dvavadd 36620 dvhmulr 36692 cdlemm10N 36724 pellfund14 37779 mendmulr 38075 fmuldfeq 40133 stoweidlem19 40554 stoweidlem26 40561 pfxpfxid 41741 pfxcctswrd 41742 prelspr 42061 lincval1 42533 |
Copyright terms: Public domain | W3C validator |