![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpbiran2 | Structured version Visualization version GIF version |
Description: Detach truth from conjunction in biconditional. (Contributed by NM, 22-Feb-1996.) |
Ref | Expression |
---|---|
mpbiran2.1 | ⊢ 𝜒 |
mpbiran2.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
mpbiran2 | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbiran2.2 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | mpbiran2.1 | . . 3 ⊢ 𝜒 | |
3 | 2 | biantru 525 | . 2 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜒)) |
4 | 1, 3 | bitr4i 267 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: pm5.62 978 reueq 3437 ss0b 4006 eusv1 4890 eusv2nf 4894 eusv2 4895 opthprc 5201 sosn 5222 opelresOLD 5438 fdmrn 6102 f1cnvcnv 6147 fores 6162 f1orn 6185 funfv 6304 dfoprab2 6743 elxp7 7245 tpostpos 7417 canthwe 9511 recmulnq 9824 opelreal 9989 elreal2 9991 eqresr 9996 elnn1uz2 11803 faclbnd4lem1 13120 isprm2 15442 joindm 17050 meetdm 17064 symgbas0 17860 efgs1 18194 toptopon 20770 ist1-3 21201 perfcls 21217 prdsxmetlem 22220 rusgrprc 26542 hhsssh2 28255 choc0 28313 chocnul 28315 shlesb1i 28373 adjeu 28876 isarchi 29864 derang0 31277 brtxp 32112 brpprod 32117 dfon3 32124 brtxpsd 32126 topmeet 32484 filnetlem2 32499 filnetlem3 32500 bj-rabtrALT 33052 bj-snsetex 33076 relowlpssretop 33342 poimirlem28 33567 fdc 33671 0totbnd 33702 heiborlem3 33742 cossssid 34357 cnvrefrelcoss2 34423 ifpid3g 38154 elintima 38262 |
Copyright terms: Public domain | W3C validator |