![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpanl12 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
Ref | Expression |
---|---|
mpanl12.1 | ⊢ 𝜑 |
mpanl12.2 | ⊢ 𝜓 |
mpanl12.3 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpanl12 | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl12.2 | . 2 ⊢ 𝜓 | |
2 | mpanl12.1 | . . 3 ⊢ 𝜑 | |
3 | mpanl12.3 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mpanl1 718 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | mpan 708 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: reuun1 4052 frminex 5246 tz6.26i 5873 wfii 5875 opthreg 8686 opthregOLD 8688 unsnen 9567 axcnre 10177 addgt0 10706 addgegt0 10707 addgtge0 10708 addge0 10709 addgt0i 10759 addge0i 10760 addgegt0i 10761 add20i 10763 mulge0i 10767 recextlem1 10849 recne0 10890 recdiv 10923 rec11i 10958 recgt1 11111 prodgt0i 11122 prodge0i 11123 xadddi2 12320 iccshftri 12500 iccshftli 12502 iccdili 12504 icccntri 12506 mulexpz 13094 expaddz 13098 m1expeven 13101 iexpcyc 13163 cnpart 14179 resqrex 14190 sqreulem 14298 amgm2 14308 rlim 14425 ello12 14446 elo12 14457 efcllem 15007 ege2le3 15019 dvdslelem 15233 divalglem1 15319 divalglem6 15323 divalglem9 15326 gcdaddmlem 15447 sqnprm 15616 prmlem1 16016 prmlem2 16029 xpscfn 16421 m1expaddsub 18118 psgnuni 18119 gzrngunitlem 20013 lmres 21306 zdis 22820 iihalf1 22931 lmclimf 23302 vitali 23581 ismbf 23596 ismbfcn 23597 mbfconst 23601 cncombf 23624 cnmbf 23625 limcfval 23835 dvnfre 23914 quotlem 24254 ulmval 24333 ulmpm 24336 abelthlem2 24385 abelthlem3 24386 abelthlem5 24388 abelthlem7 24391 efcvx 24402 logtayl 24605 logccv 24608 cxpcn3 24688 emcllem2 24922 zetacvg 24940 basellem5 25010 bposlem7 25214 chebbnd1lem3 25359 dchrisumlem3 25379 iscgrgd 25607 axcontlem2 26044 nv1 27839 blocnilem 27968 ipasslem8 28001 siii 28017 ubthlem1 28035 norm1 28415 hhshsslem2 28434 hoscli 28930 hodcli 28931 cnlnadjlem7 29241 adjbdln 29251 pjnmopi 29316 strlem1 29418 rexdiv 29943 tpr2rico 30267 qqhre 30373 signsply0 30937 subfacval3 31478 erdszelem4 31483 erdszelem8 31487 elmrsubrn 31724 rdgprc 32005 frindi 32050 fwddifval 32575 fwddifnval 32576 poimirlem29 33751 ismblfin 33763 itg2addnclem 33774 caures 33869 |
Copyright terms: Public domain | W3C validator |