![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp3an13 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
Ref | Expression |
---|---|
mp3an13.1 | ⊢ 𝜑 |
mp3an13.2 | ⊢ 𝜒 |
mp3an13.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an13 | ⊢ (𝜓 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an13.1 | . 2 ⊢ 𝜑 | |
2 | mp3an13.2 | . . 3 ⊢ 𝜒 | |
3 | mp3an13.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mp3an3 1526 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
5 | 1, 4 | mpan 708 | 1 ⊢ (𝜓 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: predeq2 5796 wrecseq2 7531 oeoalem 7796 mulid1 10150 addltmul 11381 eluzaddi 11827 fz01en 12483 fznatpl1 12509 expubnd 13036 bernneq 13105 bernneq2 13106 faclbnd4lem1 13195 hashfun 13337 bpoly2 14908 bpoly3 14909 fsumcube 14911 efi4p 14987 efival 15002 cos2tsin 15029 cos01bnd 15036 cos01gt0 15041 dvds0 15120 odd2np1 15188 opoe 15210 divalglem0 15239 gcdid 15371 pythagtriplem4 15647 ressid 16058 zringcyg 19962 lecldbas 21146 blssioo 22720 tgioo 22721 rerest 22729 xrrest 22732 zdis 22741 reconnlem2 22752 metdscn2 22782 negcncf 22843 iihalf2 22854 cncmet 23240 rrxmvallem 23308 rrxmval 23309 ovolunlem1a 23385 ismbf3d 23541 c1lip2 23881 pilem2 24326 pilem3 24327 sinperlem 24352 sincosq1sgn 24370 sincosq2sgn 24371 sinq12gt0 24379 cosq14gt0 24382 cosq14ge0 24383 coseq1 24394 sinord 24400 zetacvg 24861 1sgmprm 25044 ppiub 25049 chtublem 25056 chtub 25057 bcp1ctr 25124 bpos1lem 25127 bposlem2 25130 bposlem3 25131 bposlem4 25132 bposlem5 25133 bposlem6 25134 bposlem7 25135 bposlem9 25137 axlowdim 25961 ipidsq 27795 ipasslem1 27916 ipasslem2 27917 ipasslem4 27919 ipasslem5 27920 ipasslem8 27922 ipasslem9 27923 ipasslem11 27925 pjoc1i 28520 h1de2bi 28643 h1de2ctlem 28644 spanunsni 28668 opsqrlem1 29229 opsqrlem6 29234 chrelati 29453 chrelat2i 29454 cvexchlem 29457 pnfinf 29967 rrhre 30295 erdszelem5 31405 wsuceq2 31988 taupilem1 33399 finxpreclem2 33459 sin2h 33631 cos2h 33632 tan2h 33633 poimirlem27 33668 poimirlem30 33671 broucube 33675 mblfinlem1 33678 heiborlem6 33847 icccncfext 40520 dirkertrigeq 40738 zlmodzxzel 42560 dignn0flhalflem1 42836 onetansqsecsq 42932 cotsqcscsq 42933 |
Copyright terms: Public domain | W3C validator |