![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp3an12i | Structured version Visualization version GIF version |
Description: mp3an 1572 with antecedents in standard conjunction form and with one hypothesis an implication. (Contributed by Alan Sare, 28-Aug-2016.) |
Ref | Expression |
---|---|
mp3an12i.1 | ⊢ 𝜑 |
mp3an12i.2 | ⊢ 𝜓 |
mp3an12i.3 | ⊢ (𝜒 → 𝜃) |
mp3an12i.4 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
mp3an12i | ⊢ (𝜒 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an12i.3 | . 2 ⊢ (𝜒 → 𝜃) | |
2 | mp3an12i.1 | . . 3 ⊢ 𝜑 | |
3 | mp3an12i.2 | . . 3 ⊢ 𝜓 | |
4 | mp3an12i.4 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
5 | 2, 3, 4 | mp3an12 1562 | . 2 ⊢ (𝜃 → 𝜏) |
6 | 1, 5 | syl 17 | 1 ⊢ (𝜒 → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 df-3an 1073 |
This theorem is referenced by: ener 8160 dfac2b 9157 hashfun 13426 funcnvs2 13867 3dvds 15261 oddp1d2 15290 bitsres 15403 pilem3 24427 bposlem9 25238 gausslemma2dlem1 25312 umgr2v2e 26656 clwlkclwwlken 27162 clwwlken 27208 0wlkonlem2 27299 clwwlknonclwlknonen 27552 dlwwlknondlwlknonen 27557 eulerpartlemgvv 30778 scutbdaybnd 32258 scutbdaylt 32259 poimirlem26 33768 mblfinlem2 33780 isosctrlem1ALT 39692 fmtnorec1 41974 evengpoap3 42212 |
Copyright terms: Public domain | W3C validator |