Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp2ani Structured version   Visualization version   GIF version

Theorem mp2ani 714
 Description: An inference based on modus ponens. (Contributed by NM, 12-Dec-2004.)
Hypotheses
Ref Expression
mp2ani.1 𝜓
mp2ani.2 𝜒
mp2ani.3 (𝜑 → ((𝜓𝜒) → 𝜃))
Assertion
Ref Expression
mp2ani (𝜑𝜃)

Proof of Theorem mp2ani
StepHypRef Expression
1 mp2ani.2 . 2 𝜒
2 mp2ani.1 . . 3 𝜓
3 mp2ani.3 . . 3 (𝜑 → ((𝜓𝜒) → 𝜃))
42, 3mpani 712 . 2 (𝜑 → (𝜒𝜃))
51, 4mpi 20 1 (𝜑𝜃)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-an 385 This theorem is referenced by:  dfom3  8582  dfac5lem4  8987  dfac9  8996  cflem  9106  canthp1lem2  9513  addsrpr  9934  mulsrpr  9935  trclublem  13780  gcdaddmlem  15292  sto1i  29223  stji1i  29229  kur14lem9  31322  dfon2lem4  31815  rtrclex  38241  comptiunov2i  38315
 Copyright terms: Public domain W3C validator