Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  morex Structured version   Visualization version   GIF version

Theorem morex 3542
 Description: Derive membership from uniqueness. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
morex.1 𝐵 ∈ V
morex.2 (𝑥 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
morex ((∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝜑) → (𝜓𝐵𝐴))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem morex
StepHypRef Expression
1 df-rex 3067 . . . 4 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 exancom 1938 . . . 4 (∃𝑥(𝑥𝐴𝜑) ↔ ∃𝑥(𝜑𝑥𝐴))
31, 2bitri 264 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝜑𝑥𝐴))
4 nfmo1 2629 . . . . . 6 𝑥∃*𝑥𝜑
5 nfe1 2183 . . . . . 6 𝑥𝑥(𝜑𝑥𝐴)
64, 5nfan 1980 . . . . 5 𝑥(∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝑥𝐴))
7 mopick 2684 . . . . 5 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝑥𝐴)) → (𝜑𝑥𝐴))
86, 7alrimi 2238 . . . 4 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝑥𝐴)) → ∀𝑥(𝜑𝑥𝐴))
9 morex.1 . . . . 5 𝐵 ∈ V
10 morex.2 . . . . . 6 (𝑥 = 𝐵 → (𝜑𝜓))
11 eleq1 2838 . . . . . 6 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
1210, 11imbi12d 333 . . . . 5 (𝑥 = 𝐵 → ((𝜑𝑥𝐴) ↔ (𝜓𝐵𝐴)))
139, 12spcv 3450 . . . 4 (∀𝑥(𝜑𝑥𝐴) → (𝜓𝐵𝐴))
148, 13syl 17 . . 3 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝑥𝐴)) → (𝜓𝐵𝐴))
153, 14sylan2b 581 . 2 ((∃*𝑥𝜑 ∧ ∃𝑥𝐴 𝜑) → (𝜓𝐵𝐴))
1615ancoms 446 1 ((∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝜑) → (𝜓𝐵𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382  ∀wal 1629   = wceq 1631  ∃wex 1852   ∈ wcel 2145  ∃*wmo 2619  ∃wrex 3062  Vcvv 3351 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-rex 3067  df-v 3353 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator