MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mopntopon Structured version   Visualization version   GIF version

Theorem mopntopon 22366
Description: The set of open sets of a metric space 𝑋 is a topology on 𝑋. Remark in [Kreyszig] p. 19. This theorem connects the two concepts and makes available the theorems for topologies for use with metric spaces. (Contributed by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
mopnval.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
mopntopon (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))

Proof of Theorem mopntopon
StepHypRef Expression
1 mopnval.1 . . 3 𝐽 = (MetOpen‘𝐷)
21mopnval 22365 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷)))
3 blbas 22357 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ∈ TopBases)
4 tgtopon 20898 . . . 4 (ran (ball‘𝐷) ∈ TopBases → (topGen‘ran (ball‘𝐷)) ∈ (TopOn‘ ran (ball‘𝐷)))
53, 4syl 17 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (topGen‘ran (ball‘𝐷)) ∈ (TopOn‘ ran (ball‘𝐷)))
6 unirnbl 22347 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) = 𝑋)
76fveq2d 6308 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (TopOn‘ ran (ball‘𝐷)) = (TopOn‘𝑋))
85, 7eleqtrd 2805 . 2 (𝐷 ∈ (∞Met‘𝑋) → (topGen‘ran (ball‘𝐷)) ∈ (TopOn‘𝑋))
92, 8eqeltrd 2803 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1596  wcel 2103   cuni 4544  ran crn 5219  cfv 6001  topGenctg 16221  ∞Metcxmt 19854  ballcbl 19856  MetOpencmopn 19859  TopOnctopon 20838  TopBasesctb 20872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-er 7862  df-map 7976  df-en 8073  df-dom 8074  df-sdom 8075  df-sup 8464  df-inf 8465  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-n0 11406  df-z 11491  df-uz 11801  df-q 11903  df-rp 11947  df-xneg 12060  df-xadd 12061  df-xmul 12062  df-topgen 16227  df-psmet 19861  df-xmet 19862  df-bl 19864  df-mopn 19865  df-top 20822  df-topon 20839  df-bases 20873
This theorem is referenced by:  mopntop  22367  mopnuni  22368  mopnm  22371  mopnss  22373  isxms2  22375  methaus  22447  prdsxmslem2  22456  metcnp3  22467  metcn  22470  metcnpi3  22473  txmetcn  22475  cnfldms  22701  cnfldtopn  22707  metdseq0  22779  metdscn2  22782  iitopon  22804  lebnumlem2  22883  lmmbr  23177  cfilfcls  23193  cmetcaulem  23207  iscmet3lem2  23211  lmle  23220  nglmle  23221  caublcls  23228  metcnp4  23229  metcn4  23230  cmetss  23234  relcmpcmet  23236  bcth2  23248  vmcn  27784  dipcn  27805  blocni  27890  ipasslem7  27921  ubthlem1  27956  ubthlem2  27957  minvecolem4b  27964  minvecolem4  27966  axhcompl-zf  28085  hlimadd  28280  hlim0  28322  occllem  28392  hmopidmchi  29240  fmcncfil  30207  ismtyhmeolem  33835  heiborlem9  33850  bfplem2  33854
  Copyright terms: Public domain W3C validator