![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mopnex | Structured version Visualization version GIF version |
Description: The topology generated by an extended metric can also be generated by a true metric. Thus, "metrizable topologies" can equivalently be defined in terms of metrics or extended metrics. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
mopnex.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
mopnex | ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1rp 12049 | . . 3 ⊢ 1 ∈ ℝ+ | |
2 | eqid 2760 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) | |
3 | 2 | stdbdmet 22542 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 1 ∈ ℝ+) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) ∈ (Met‘𝑋)) |
4 | 1, 3 | mpan2 709 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) ∈ (Met‘𝑋)) |
5 | rpxr 12053 | . . . 4 ⊢ (1 ∈ ℝ+ → 1 ∈ ℝ*) | |
6 | 1, 5 | ax-mp 5 | . . 3 ⊢ 1 ∈ ℝ* |
7 | 0lt1 10762 | . . 3 ⊢ 0 < 1 | |
8 | mopnex.1 | . . . 4 ⊢ 𝐽 = (MetOpen‘𝐷) | |
9 | 2, 8 | stdbdmopn 22544 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 1 ∈ ℝ* ∧ 0 < 1) → 𝐽 = (MetOpen‘(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)))) |
10 | 6, 7, 9 | mp3an23 1565 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (MetOpen‘(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)))) |
11 | fveq2 6353 | . . . 4 ⊢ (𝑑 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) → (MetOpen‘𝑑) = (MetOpen‘(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)))) | |
12 | 11 | eqeq2d 2770 | . . 3 ⊢ (𝑑 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) → (𝐽 = (MetOpen‘𝑑) ↔ 𝐽 = (MetOpen‘(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1))))) |
13 | 12 | rspcev 3449 | . 2 ⊢ (((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) ∈ (Met‘𝑋) ∧ 𝐽 = (MetOpen‘(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)))) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑)) |
14 | 4, 10, 13 | syl2anc 696 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 ifcif 4230 class class class wbr 4804 ‘cfv 6049 (class class class)co 6814 ↦ cmpt2 6816 0cc0 10148 1c1 10149 ℝ*cxr 10285 < clt 10286 ≤ cle 10287 ℝ+crp 12045 ∞Metcxmt 19953 Metcme 19954 MetOpencmopn 19958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-sup 8515 df-inf 8516 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-n0 11505 df-z 11590 df-uz 11900 df-q 12002 df-rp 12046 df-xneg 12159 df-xadd 12160 df-xmul 12161 df-icc 12395 df-topgen 16326 df-psmet 19960 df-xmet 19961 df-met 19962 df-bl 19963 df-mopn 19964 df-bases 20972 |
This theorem is referenced by: methaus 22546 |
Copyright terms: Public domain | W3C validator |