Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mooran1 Structured version   Visualization version   GIF version

Theorem mooran1 2665
 Description: "At most one" imports disjunction to conjunction. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
mooran1 ((∃*𝑥𝜑 ∨ ∃*𝑥𝜓) → ∃*𝑥(𝜑𝜓))

Proof of Theorem mooran1
StepHypRef Expression
1 simpl 474 . . 3 ((𝜑𝜓) → 𝜑)
21moimi 2658 . 2 (∃*𝑥𝜑 → ∃*𝑥(𝜑𝜓))
3 moan 2662 . 2 (∃*𝑥𝜓 → ∃*𝑥(𝜑𝜓))
42, 3jaoi 393 1 ((∃*𝑥𝜑 ∨ ∃*𝑥𝜓) → ∃*𝑥(𝜑𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ wa 383  ∃*wmo 2608 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-10 2168  ax-12 2196 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ex 1854  df-nf 1859  df-eu 2611  df-mo 2612 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator