MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moor Structured version   Visualization version   GIF version

Theorem moor 2664
Description: "At most one" is still the case when a disjunct is removed. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
moor (∃*𝑥(𝜑𝜓) → ∃*𝑥𝜑)

Proof of Theorem moor
StepHypRef Expression
1 orc 399 . 2 (𝜑 → (𝜑𝜓))
21moimi 2658 1 (∃*𝑥(𝜑𝜓) → ∃*𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  ∃*wmo 2608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-10 2168  ax-12 2196
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ex 1854  df-nf 1859  df-eu 2611  df-mo 2612
This theorem is referenced by:  mooran2  2666
  Copyright terms: Public domain W3C validator