![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > moop2 | Structured version Visualization version GIF version |
Description: "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
moop2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
moop2 | ⊢ ∃*𝑥 𝐴 = 〈𝐵, 𝑥〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2 2790 | . . . 4 ⊢ ((𝐴 = 〈𝐵, 𝑥〉 ∧ 𝐴 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉) → 〈𝐵, 𝑥〉 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉) | |
2 | moop2.1 | . . . . . 6 ⊢ 𝐵 ∈ V | |
3 | vex 3352 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | 2, 3 | opth 5072 | . . . . 5 ⊢ (〈𝐵, 𝑥〉 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉 ↔ (𝐵 = ⦋𝑦 / 𝑥⦌𝐵 ∧ 𝑥 = 𝑦)) |
5 | 4 | simprbi 478 | . . . 4 ⊢ (〈𝐵, 𝑥〉 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉 → 𝑥 = 𝑦) |
6 | 1, 5 | syl 17 | . . 3 ⊢ ((𝐴 = 〈𝐵, 𝑥〉 ∧ 𝐴 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉) → 𝑥 = 𝑦) |
7 | 6 | gen2 1870 | . 2 ⊢ ∀𝑥∀𝑦((𝐴 = 〈𝐵, 𝑥〉 ∧ 𝐴 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉) → 𝑥 = 𝑦) |
8 | nfcsb1v 3696 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
9 | nfcv 2912 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
10 | 8, 9 | nfop 4553 | . . . 4 ⊢ Ⅎ𝑥〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉 |
11 | 10 | nfeq2 2928 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉 |
12 | csbeq1a 3689 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
13 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
14 | 12, 13 | opeq12d 4545 | . . . 4 ⊢ (𝑥 = 𝑦 → 〈𝐵, 𝑥〉 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉) |
15 | 14 | eqeq2d 2780 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐴 = 〈𝐵, 𝑥〉 ↔ 𝐴 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉)) |
16 | 11, 15 | mo4f 2664 | . 2 ⊢ (∃*𝑥 𝐴 = 〈𝐵, 𝑥〉 ↔ ∀𝑥∀𝑦((𝐴 = 〈𝐵, 𝑥〉 ∧ 𝐴 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉) → 𝑥 = 𝑦)) |
17 | 7, 16 | mpbir 221 | 1 ⊢ ∃*𝑥 𝐴 = 〈𝐵, 𝑥〉 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∀wal 1628 = wceq 1630 ∈ wcel 2144 ∃*wmo 2618 Vcvv 3349 ⦋csb 3680 〈cop 4320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 |
This theorem is referenced by: euop2 5105 |
Copyright terms: Public domain | W3C validator |