Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  monpropd Structured version   Visualization version   GIF version

Theorem monpropd 16598
 Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same monomorphisms. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
monpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
monpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
monpropd.c (𝜑𝐶 ∈ Cat)
monpropd.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
monpropd (𝜑 → (Mono‘𝐶) = (Mono‘𝐷))

Proof of Theorem monpropd
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . . . . . . . . . . . 12 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2760 . . . . . . . . . . . 12 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2760 . . . . . . . . . . . 12 (Hom ‘𝐷) = (Hom ‘𝐷)
4 monpropd.3 . . . . . . . . . . . . . 14 (𝜑 → (Homf𝐶) = (Homf𝐷))
54ad2antrr 764 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (Homf𝐶) = (Homf𝐷))
65ad2antrr 764 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → (Homf𝐶) = (Homf𝐷))
7 simpr 479 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → 𝑐 ∈ (Base‘𝐶))
8 simp-4r 827 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → 𝑎 ∈ (Base‘𝐶))
91, 2, 3, 6, 7, 8homfeqval 16558 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → (𝑐(Hom ‘𝐶)𝑎) = (𝑐(Hom ‘𝐷)𝑎))
10 eqid 2760 . . . . . . . . . . . 12 (comp‘𝐶) = (comp‘𝐶)
11 eqid 2760 . . . . . . . . . . . 12 (comp‘𝐷) = (comp‘𝐷)
124ad5antr 775 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → (Homf𝐶) = (Homf𝐷))
13 monpropd.4 . . . . . . . . . . . . 13 (𝜑 → (compf𝐶) = (compf𝐷))
1413ad5antr 775 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → (compf𝐶) = (compf𝐷))
15 simplr 809 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → 𝑐 ∈ (Base‘𝐶))
16 simp-5r 831 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → 𝑎 ∈ (Base‘𝐶))
17 simp-4r 827 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → 𝑏 ∈ (Base‘𝐶))
18 simpr 479 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎))
19 simpllr 817 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏))
201, 2, 10, 11, 12, 14, 15, 16, 17, 18, 19comfeqval 16569 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔) = (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))
219, 20mpteq12dva 4884 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔)) = (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔)))
2221cnveqd 5453 . . . . . . . . 9 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔)) = (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔)))
2322funeqd 6071 . . . . . . . 8 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → (Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔)) ↔ Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))))
2423ralbidva 3123 . . . . . . 7 ((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) → (∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔)) ↔ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))))
2524rabbidva 3328 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))} = {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))})
26 simplr 809 . . . . . . . 8 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → 𝑎 ∈ (Base‘𝐶))
27 simpr 479 . . . . . . . 8 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → 𝑏 ∈ (Base‘𝐶))
281, 2, 3, 5, 26, 27homfeqval 16558 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (𝑎(Hom ‘𝐶)𝑏) = (𝑎(Hom ‘𝐷)𝑏))
294homfeqbas 16557 . . . . . . . . 9 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
3029ad2antrr 764 . . . . . . . 8 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (Base‘𝐶) = (Base‘𝐷))
3130raleqdv 3283 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔)) ↔ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))))
3228, 31rabeqbidv 3335 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))} = {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))})
3325, 32eqtrd 2794 . . . . 5 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))} = {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))})
34333impa 1101 . . . 4 ((𝜑𝑎 ∈ (Base‘𝐶) ∧ 𝑏 ∈ (Base‘𝐶)) → {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))} = {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))})
3534mpt2eq3dva 6884 . . 3 (𝜑 → (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))}) = (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}))
36 mpt2eq12 6880 . . . 4 (((Base‘𝐶) = (Base‘𝐷) ∧ (Base‘𝐶) = (Base‘𝐷)) → (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}) = (𝑎 ∈ (Base‘𝐷), 𝑏 ∈ (Base‘𝐷) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}))
3729, 29, 36syl2anc 696 . . 3 (𝜑 → (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}) = (𝑎 ∈ (Base‘𝐷), 𝑏 ∈ (Base‘𝐷) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}))
3835, 37eqtrd 2794 . 2 (𝜑 → (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))}) = (𝑎 ∈ (Base‘𝐷), 𝑏 ∈ (Base‘𝐷) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}))
39 eqid 2760 . . 3 (Mono‘𝐶) = (Mono‘𝐶)
40 monpropd.c . . 3 (𝜑𝐶 ∈ Cat)
411, 2, 10, 39, 40monfval 16593 . 2 (𝜑 → (Mono‘𝐶) = (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))}))
42 eqid 2760 . . 3 (Base‘𝐷) = (Base‘𝐷)
43 eqid 2760 . . 3 (Mono‘𝐷) = (Mono‘𝐷)
44 monpropd.d . . 3 (𝜑𝐷 ∈ Cat)
4542, 3, 11, 43, 44monfval 16593 . 2 (𝜑 → (Mono‘𝐷) = (𝑎 ∈ (Base‘𝐷), 𝑏 ∈ (Base‘𝐷) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}))
4638, 41, 453eqtr4d 2804 1 (𝜑 → (Mono‘𝐶) = (Mono‘𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∀wral 3050  {crab 3054  ⟨cop 4327   ↦ cmpt 4881  ◡ccnv 5265  Fun wfun 6043  ‘cfv 6049  (class class class)co 6813   ↦ cmpt2 6815  Basecbs 16059  Hom chom 16154  compcco 16155  Catccat 16526  Homf chomf 16528  compfccomf 16529  Monocmon 16589 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-homf 16532  df-comf 16533  df-mon 16591 This theorem is referenced by:  oppcepi  16600
 Copyright terms: Public domain W3C validator