![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > monoordxr | Structured version Visualization version GIF version |
Description: Ordering relation for a monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
Ref | Expression |
---|---|
monoordxr.p | ⊢ Ⅎ𝑘𝜑 |
monoordxr.k | ⊢ Ⅎ𝑘𝐹 |
monoordxr.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
monoordxr.x | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ*) |
monoordxr.l | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
Ref | Expression |
---|---|
monoordxr | ⊢ (𝜑 → (𝐹‘𝑀) ≤ (𝐹‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | monoordxr.n | . 2 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
2 | monoordxr.p | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
3 | nfv 1995 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ (𝑀...𝑁) | |
4 | 2, 3 | nfan 1980 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) |
5 | monoordxr.k | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
6 | nfcv 2913 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
7 | 5, 6 | nffv 6339 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
8 | nfcv 2913 | . . . . 5 ⊢ Ⅎ𝑘ℝ* | |
9 | 7, 8 | nfel 2926 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑗) ∈ ℝ* |
10 | 4, 9 | nfim 1977 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝐹‘𝑗) ∈ ℝ*) |
11 | eleq1w 2833 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝑗 ∈ (𝑀...𝑁))) | |
12 | 11 | anbi2d 614 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)))) |
13 | fveq2 6332 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
14 | 13 | eleq1d 2835 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ ℝ* ↔ (𝐹‘𝑗) ∈ ℝ*)) |
15 | 12, 14 | imbi12d 333 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ*) ↔ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝐹‘𝑗) ∈ ℝ*))) |
16 | monoordxr.x | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ*) | |
17 | 10, 15, 16 | chvar 2424 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝐹‘𝑗) ∈ ℝ*) |
18 | nfv 1995 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ (𝑀...(𝑁 − 1)) | |
19 | 2, 18 | nfan 1980 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ (𝑀...(𝑁 − 1))) |
20 | nfcv 2913 | . . . . 5 ⊢ Ⅎ𝑘 ≤ | |
21 | nfcv 2913 | . . . . . 6 ⊢ Ⅎ𝑘(𝑗 + 1) | |
22 | 5, 21 | nffv 6339 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘(𝑗 + 1)) |
23 | 7, 20, 22 | nfbr 4833 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑗) ≤ (𝐹‘(𝑗 + 1)) |
24 | 19, 23 | nfim 1977 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑗) ≤ (𝐹‘(𝑗 + 1))) |
25 | eleq1w 2833 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ 𝑗 ∈ (𝑀...(𝑁 − 1)))) | |
26 | 25 | anbi2d 614 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) ↔ (𝜑 ∧ 𝑗 ∈ (𝑀...(𝑁 − 1))))) |
27 | fvoveq1 6816 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑗 + 1))) | |
28 | 13, 27 | breq12d 4799 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ (𝐹‘𝑗) ≤ (𝐹‘(𝑗 + 1)))) |
29 | 26, 28 | imbi12d 333 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) ↔ ((𝜑 ∧ 𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑗) ≤ (𝐹‘(𝑗 + 1))))) |
30 | monoordxr.l | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) | |
31 | 24, 29, 30 | chvar 2424 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑗) ≤ (𝐹‘(𝑗 + 1))) |
32 | 1, 17, 31 | monoordxrv 40228 | 1 ⊢ (𝜑 → (𝐹‘𝑀) ≤ (𝐹‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 Ⅎwnf 1856 ∈ wcel 2145 Ⅎwnfc 2900 class class class wbr 4786 ‘cfv 6031 (class class class)co 6793 1c1 10139 + caddc 10141 ℝ*cxr 10275 ≤ cle 10277 − cmin 10468 ℤ≥cuz 11888 ...cfz 12533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-n0 11495 df-z 11580 df-uz 11889 df-fz 12534 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |