Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  monoordxr Structured version   Visualization version   GIF version

Theorem monoordxr 40229
 Description: Ordering relation for a monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.)
Hypotheses
Ref Expression
monoordxr.p 𝑘𝜑
monoordxr.k 𝑘𝐹
monoordxr.n (𝜑𝑁 ∈ (ℤ𝑀))
monoordxr.x ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*)
monoordxr.l ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
Assertion
Ref Expression
monoordxr (𝜑 → (𝐹𝑀) ≤ (𝐹𝑁))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁
Allowed substitution hints:   𝜑(𝑘)   𝐹(𝑘)

Proof of Theorem monoordxr
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 monoordxr.n . 2 (𝜑𝑁 ∈ (ℤ𝑀))
2 monoordxr.p . . . . 5 𝑘𝜑
3 nfv 1995 . . . . 5 𝑘 𝑗 ∈ (𝑀...𝑁)
42, 3nfan 1980 . . . 4 𝑘(𝜑𝑗 ∈ (𝑀...𝑁))
5 monoordxr.k . . . . . 6 𝑘𝐹
6 nfcv 2913 . . . . . 6 𝑘𝑗
75, 6nffv 6339 . . . . 5 𝑘(𝐹𝑗)
8 nfcv 2913 . . . . 5 𝑘*
97, 8nfel 2926 . . . 4 𝑘(𝐹𝑗) ∈ ℝ*
104, 9nfim 1977 . . 3 𝑘((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ*)
11 eleq1w 2833 . . . . 5 (𝑘 = 𝑗 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝑗 ∈ (𝑀...𝑁)))
1211anbi2d 614 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑𝑗 ∈ (𝑀...𝑁))))
13 fveq2 6332 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1413eleq1d 2835 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹𝑗) ∈ ℝ*))
1512, 14imbi12d 333 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*) ↔ ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ*)))
16 monoordxr.x . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*)
1710, 15, 16chvar 2424 . 2 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ*)
18 nfv 1995 . . . . 5 𝑘 𝑗 ∈ (𝑀...(𝑁 − 1))
192, 18nfan 1980 . . . 4 𝑘(𝜑𝑗 ∈ (𝑀...(𝑁 − 1)))
20 nfcv 2913 . . . . 5 𝑘
21 nfcv 2913 . . . . . 6 𝑘(𝑗 + 1)
225, 21nffv 6339 . . . . 5 𝑘(𝐹‘(𝑗 + 1))
237, 20, 22nfbr 4833 . . . 4 𝑘(𝐹𝑗) ≤ (𝐹‘(𝑗 + 1))
2419, 23nfim 1977 . . 3 𝑘((𝜑𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑗) ≤ (𝐹‘(𝑗 + 1)))
25 eleq1w 2833 . . . . 5 (𝑘 = 𝑗 → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ 𝑗 ∈ (𝑀...(𝑁 − 1))))
2625anbi2d 614 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) ↔ (𝜑𝑗 ∈ (𝑀...(𝑁 − 1)))))
27 fvoveq1 6816 . . . . 5 (𝑘 = 𝑗 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑗 + 1)))
2813, 27breq12d 4799 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ (𝐹𝑗) ≤ (𝐹‘(𝑗 + 1))))
2926, 28imbi12d 333 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1))) ↔ ((𝜑𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑗) ≤ (𝐹‘(𝑗 + 1)))))
30 monoordxr.l . . 3 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
3124, 29, 30chvar 2424 . 2 ((𝜑𝑗 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑗) ≤ (𝐹‘(𝑗 + 1)))
321, 17, 31monoordxrv 40228 1 (𝜑 → (𝐹𝑀) ≤ (𝐹𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1631  Ⅎwnf 1856   ∈ wcel 2145  Ⅎwnfc 2900   class class class wbr 4786  ‘cfv 6031  (class class class)co 6793  1c1 10139   + caddc 10141  ℝ*cxr 10275   ≤ cle 10277   − cmin 10468  ℤ≥cuz 11888  ...cfz 12533 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator