Step | Hyp | Ref
| Expression |
1 | | monoord2xrv.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
2 | | monoord2xrv.x |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈
ℝ*) |
3 | 2 | xnegcld 12244 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → -𝑒(𝐹‘𝑘) ∈
ℝ*) |
4 | | eqid 2724 |
. . . . . 6
⊢ (𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘)) = (𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘)) |
5 | 3, 4 | fmptd 6500 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘)):(𝑀...𝑁)⟶ℝ*) |
6 | 5 | ffvelrnda 6474 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝑁)) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘))‘𝑛) ∈
ℝ*) |
7 | | monoord2xrv.l |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
8 | 7 | ralrimiva 3068 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
9 | | oveq1 6772 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑛 → (𝑘 + 1) = (𝑛 + 1)) |
10 | 9 | fveq2d 6308 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1))) |
11 | | fveq2 6304 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) |
12 | 10, 11 | breq12d 4773 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘) ↔ (𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛))) |
13 | 12 | cbvralv 3274 |
. . . . . . . 8
⊢
(∀𝑘 ∈
(𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘) ↔ ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛)) |
14 | 8, 13 | sylib 208 |
. . . . . . 7
⊢ (𝜑 → ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛)) |
15 | 14 | r19.21bi 3034 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛)) |
16 | | fzp1elp1 12508 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (𝑀...(𝑁 − 1)) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1))) |
17 | 16 | adantl 473 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1))) |
18 | | eluzelz 11810 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
19 | 1, 18 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℤ) |
20 | 19 | zcnd 11596 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℂ) |
21 | | ax-1cn 10107 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
22 | | npcan 10403 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 −
1) + 1) = 𝑁) |
23 | 20, 21, 22 | sylancl 697 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
24 | 23 | oveq2d 6781 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁)) |
25 | 24 | adantr 472 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁)) |
26 | 17, 25 | eleqtrd 2805 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...𝑁)) |
27 | 2 | ralrimiva 3068 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈
ℝ*) |
28 | 27 | adantr 472 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈
ℝ*) |
29 | | fveq2 6304 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
30 | 29 | eleq1d 2788 |
. . . . . . . . 9
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) ∈ ℝ* ↔ (𝐹‘(𝑛 + 1)) ∈
ℝ*)) |
31 | 30 | rspcv 3409 |
. . . . . . . 8
⊢ ((𝑛 + 1) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ* → (𝐹‘(𝑛 + 1)) ∈
ℝ*)) |
32 | 26, 28, 31 | sylc 65 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ∈
ℝ*) |
33 | | fzssp1 12498 |
. . . . . . . . . 10
⊢ (𝑀...(𝑁 − 1)) ⊆ (𝑀...((𝑁 − 1) + 1)) |
34 | 33, 24 | syl5sseq 3759 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀...(𝑁 − 1)) ⊆ (𝑀...𝑁)) |
35 | 34 | sselda 3709 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (𝑀...𝑁)) |
36 | 11 | eleq1d 2788 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘) ∈ ℝ* ↔ (𝐹‘𝑛) ∈
ℝ*)) |
37 | 36 | rspcv 3409 |
. . . . . . . 8
⊢ (𝑛 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ* → (𝐹‘𝑛) ∈
ℝ*)) |
38 | 35, 28, 37 | sylc 65 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑛) ∈
ℝ*) |
39 | | xleneg 12163 |
. . . . . . 7
⊢ (((𝐹‘(𝑛 + 1)) ∈ ℝ* ∧
(𝐹‘𝑛) ∈ ℝ*) → ((𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛) ↔ -𝑒(𝐹‘𝑛) ≤ -𝑒(𝐹‘(𝑛 + 1)))) |
40 | 32, 38, 39 | syl2anc 696 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛) ↔ -𝑒(𝐹‘𝑛) ≤ -𝑒(𝐹‘(𝑛 + 1)))) |
41 | 15, 40 | mpbid 222 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) →
-𝑒(𝐹‘𝑛) ≤ -𝑒(𝐹‘(𝑛 + 1))) |
42 | 11 | xnegeqd 40079 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → -𝑒(𝐹‘𝑘) = -𝑒(𝐹‘𝑛)) |
43 | | xnegex 12153 |
. . . . . . 7
⊢
-𝑒(𝐹‘𝑛) ∈ V |
44 | 42, 4, 43 | fvmpt 6396 |
. . . . . 6
⊢ (𝑛 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘))‘𝑛) = -𝑒(𝐹‘𝑛)) |
45 | 35, 44 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘))‘𝑛) = -𝑒(𝐹‘𝑛)) |
46 | 29 | xnegeqd 40079 |
. . . . . . 7
⊢ (𝑘 = (𝑛 + 1) → -𝑒(𝐹‘𝑘) = -𝑒(𝐹‘(𝑛 + 1))) |
47 | | xnegex 12153 |
. . . . . . 7
⊢
-𝑒(𝐹‘(𝑛 + 1)) ∈ V |
48 | 46, 4, 47 | fvmpt 6396 |
. . . . . 6
⊢ ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘))‘(𝑛 + 1)) = -𝑒(𝐹‘(𝑛 + 1))) |
49 | 26, 48 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘))‘(𝑛 + 1)) = -𝑒(𝐹‘(𝑛 + 1))) |
50 | 41, 45, 49 | 3brtr4d 4792 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘))‘𝑛) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘))‘(𝑛 + 1))) |
51 | 1, 6, 50 | monoordxrv 40127 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘))‘𝑀) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘))‘𝑁)) |
52 | | eluzfz1 12462 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
53 | 1, 52 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
54 | | fveq2 6304 |
. . . . . 6
⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) |
55 | 54 | xnegeqd 40079 |
. . . . 5
⊢ (𝑘 = 𝑀 → -𝑒(𝐹‘𝑘) = -𝑒(𝐹‘𝑀)) |
56 | | xnegex 12153 |
. . . . 5
⊢
-𝑒(𝐹‘𝑀) ∈ V |
57 | 55, 4, 56 | fvmpt 6396 |
. . . 4
⊢ (𝑀 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘))‘𝑀) = -𝑒(𝐹‘𝑀)) |
58 | 53, 57 | syl 17 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘))‘𝑀) = -𝑒(𝐹‘𝑀)) |
59 | | eluzfz2 12463 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
60 | 1, 59 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
61 | | fveq2 6304 |
. . . . . 6
⊢ (𝑘 = 𝑁 → (𝐹‘𝑘) = (𝐹‘𝑁)) |
62 | 61 | xnegeqd 40079 |
. . . . 5
⊢ (𝑘 = 𝑁 → -𝑒(𝐹‘𝑘) = -𝑒(𝐹‘𝑁)) |
63 | | xnegex 12153 |
. . . . 5
⊢
-𝑒(𝐹‘𝑁) ∈ V |
64 | 62, 4, 63 | fvmpt 6396 |
. . . 4
⊢ (𝑁 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘))‘𝑁) = -𝑒(𝐹‘𝑁)) |
65 | 60, 64 | syl 17 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘))‘𝑁) = -𝑒(𝐹‘𝑁)) |
66 | 51, 58, 65 | 3brtr3d 4791 |
. 2
⊢ (𝜑 →
-𝑒(𝐹‘𝑀) ≤ -𝑒(𝐹‘𝑁)) |
67 | 61 | eleq1d 2788 |
. . . . 5
⊢ (𝑘 = 𝑁 → ((𝐹‘𝑘) ∈ ℝ* ↔ (𝐹‘𝑁) ∈
ℝ*)) |
68 | 67 | rspcv 3409 |
. . . 4
⊢ (𝑁 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ* → (𝐹‘𝑁) ∈
ℝ*)) |
69 | 60, 27, 68 | sylc 65 |
. . 3
⊢ (𝜑 → (𝐹‘𝑁) ∈
ℝ*) |
70 | 54 | eleq1d 2788 |
. . . . 5
⊢ (𝑘 = 𝑀 → ((𝐹‘𝑘) ∈ ℝ* ↔ (𝐹‘𝑀) ∈
ℝ*)) |
71 | 70 | rspcv 3409 |
. . . 4
⊢ (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ* → (𝐹‘𝑀) ∈
ℝ*)) |
72 | 53, 27, 71 | sylc 65 |
. . 3
⊢ (𝜑 → (𝐹‘𝑀) ∈
ℝ*) |
73 | | xleneg 12163 |
. . 3
⊢ (((𝐹‘𝑁) ∈ ℝ* ∧ (𝐹‘𝑀) ∈ ℝ*) → ((𝐹‘𝑁) ≤ (𝐹‘𝑀) ↔ -𝑒(𝐹‘𝑀) ≤ -𝑒(𝐹‘𝑁))) |
74 | 69, 72, 73 | syl2anc 696 |
. 2
⊢ (𝜑 → ((𝐹‘𝑁) ≤ (𝐹‘𝑀) ↔ -𝑒(𝐹‘𝑀) ≤ -𝑒(𝐹‘𝑁))) |
75 | 66, 74 | mpbird 247 |
1
⊢ (𝜑 → (𝐹‘𝑁) ≤ (𝐹‘𝑀)) |