Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  moi Structured version   Visualization version   GIF version

Theorem moi 3422
 Description: Equality implied by "at most one." (Contributed by NM, 18-Feb-2006.)
Hypotheses
Ref Expression
moi.1 (𝑥 = 𝐴 → (𝜑𝜓))
moi.2 (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
moi (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑 ∧ (𝜓𝜒)) → 𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜒,𝑥   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem moi
StepHypRef Expression
1 moi.1 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜓))
2 moi.2 . . . . . 6 (𝑥 = 𝐵 → (𝜑𝜒))
31, 2mob 3421 . . . . 5 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑𝜓) → (𝐴 = 𝐵𝜒))
43biimprd 238 . . . 4 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑𝜓) → (𝜒𝐴 = 𝐵))
543expia 1286 . . 3 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑) → (𝜓 → (𝜒𝐴 = 𝐵)))
65impd 446 . 2 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑) → ((𝜓𝜒) → 𝐴 = 𝐵))
763impia 1280 1 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑 ∧ (𝜓𝜒)) → 𝐴 = 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∃*wmo 2499 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-v 3233 This theorem is referenced by:  enqeq  9794  f1otrspeq  17913  hausflim  21832  tglineineq  25583  tglineinteq  25585
 Copyright terms: Public domain W3C validator