![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > modxai | Structured version Visualization version GIF version |
Description: Add exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) (Revised by Mario Carneiro, 5-Feb-2015.) |
Ref | Expression |
---|---|
modxai.1 | ⊢ 𝑁 ∈ ℕ |
modxai.2 | ⊢ 𝐴 ∈ ℕ |
modxai.3 | ⊢ 𝐵 ∈ ℕ0 |
modxai.4 | ⊢ 𝐷 ∈ ℤ |
modxai.5 | ⊢ 𝐾 ∈ ℕ0 |
modxai.6 | ⊢ 𝑀 ∈ ℕ0 |
modxai.7 | ⊢ 𝐶 ∈ ℕ0 |
modxai.8 | ⊢ 𝐿 ∈ ℕ0 |
modxai.11 | ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) |
modxai.12 | ⊢ ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁) |
modxai.9 | ⊢ (𝐵 + 𝐶) = 𝐸 |
modxai.10 | ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿) |
Ref | Expression |
---|---|
modxai | ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modxai.9 | . . . . 5 ⊢ (𝐵 + 𝐶) = 𝐸 | |
2 | 1 | oveq2i 6804 | . . . 4 ⊢ (𝐴↑(𝐵 + 𝐶)) = (𝐴↑𝐸) |
3 | modxai.2 | . . . . . 6 ⊢ 𝐴 ∈ ℕ | |
4 | 3 | nncni 11232 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
5 | modxai.3 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
6 | modxai.7 | . . . . 5 ⊢ 𝐶 ∈ ℕ0 | |
7 | expadd 13109 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → (𝐴↑(𝐵 + 𝐶)) = ((𝐴↑𝐵) · (𝐴↑𝐶))) | |
8 | 4, 5, 6, 7 | mp3an 1572 | . . . 4 ⊢ (𝐴↑(𝐵 + 𝐶)) = ((𝐴↑𝐵) · (𝐴↑𝐶)) |
9 | 2, 8 | eqtr3i 2795 | . . 3 ⊢ (𝐴↑𝐸) = ((𝐴↑𝐵) · (𝐴↑𝐶)) |
10 | 9 | oveq1i 6803 | . 2 ⊢ ((𝐴↑𝐸) mod 𝑁) = (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) |
11 | nnexpcl 13080 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝐵) ∈ ℕ) | |
12 | 3, 5, 11 | mp2an 672 | . . . . . . . 8 ⊢ (𝐴↑𝐵) ∈ ℕ |
13 | 12 | nnzi 11603 | . . . . . . 7 ⊢ (𝐴↑𝐵) ∈ ℤ |
14 | 13 | a1i 11 | . . . . . 6 ⊢ (⊤ → (𝐴↑𝐵) ∈ ℤ) |
15 | modxai.5 | . . . . . . . 8 ⊢ 𝐾 ∈ ℕ0 | |
16 | 15 | nn0zi 11604 | . . . . . . 7 ⊢ 𝐾 ∈ ℤ |
17 | 16 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝐾 ∈ ℤ) |
18 | nnexpcl 13080 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (𝐴↑𝐶) ∈ ℕ) | |
19 | 3, 6, 18 | mp2an 672 | . . . . . . . 8 ⊢ (𝐴↑𝐶) ∈ ℕ |
20 | 19 | nnzi 11603 | . . . . . . 7 ⊢ (𝐴↑𝐶) ∈ ℤ |
21 | 20 | a1i 11 | . . . . . 6 ⊢ (⊤ → (𝐴↑𝐶) ∈ ℤ) |
22 | modxai.8 | . . . . . . . 8 ⊢ 𝐿 ∈ ℕ0 | |
23 | 22 | nn0zi 11604 | . . . . . . 7 ⊢ 𝐿 ∈ ℤ |
24 | 23 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝐿 ∈ ℤ) |
25 | modxai.1 | . . . . . . . 8 ⊢ 𝑁 ∈ ℕ | |
26 | nnrp 12045 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
27 | 25, 26 | ax-mp 5 | . . . . . . 7 ⊢ 𝑁 ∈ ℝ+ |
28 | 27 | a1i 11 | . . . . . 6 ⊢ (⊤ → 𝑁 ∈ ℝ+) |
29 | modxai.11 | . . . . . . 7 ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) | |
30 | 29 | a1i 11 | . . . . . 6 ⊢ (⊤ → ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁)) |
31 | modxai.12 | . . . . . . 7 ⊢ ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁) | |
32 | 31 | a1i 11 | . . . . . 6 ⊢ (⊤ → ((𝐴↑𝐶) mod 𝑁) = (𝐿 mod 𝑁)) |
33 | 14, 17, 21, 24, 28, 30, 32 | modmul12d 12932 | . . . . 5 ⊢ (⊤ → (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = ((𝐾 · 𝐿) mod 𝑁)) |
34 | 33 | trud 1641 | . . . 4 ⊢ (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = ((𝐾 · 𝐿) mod 𝑁) |
35 | modxai.10 | . . . . . 6 ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐿) | |
36 | modxai.4 | . . . . . . . . 9 ⊢ 𝐷 ∈ ℤ | |
37 | zcn 11584 | . . . . . . . . 9 ⊢ (𝐷 ∈ ℤ → 𝐷 ∈ ℂ) | |
38 | 36, 37 | ax-mp 5 | . . . . . . . 8 ⊢ 𝐷 ∈ ℂ |
39 | 25 | nncni 11232 | . . . . . . . 8 ⊢ 𝑁 ∈ ℂ |
40 | 38, 39 | mulcli 10247 | . . . . . . 7 ⊢ (𝐷 · 𝑁) ∈ ℂ |
41 | modxai.6 | . . . . . . . 8 ⊢ 𝑀 ∈ ℕ0 | |
42 | 41 | nn0cni 11506 | . . . . . . 7 ⊢ 𝑀 ∈ ℂ |
43 | 40, 42 | addcomi 10429 | . . . . . 6 ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝑀 + (𝐷 · 𝑁)) |
44 | 35, 43 | eqtr3i 2795 | . . . . 5 ⊢ (𝐾 · 𝐿) = (𝑀 + (𝐷 · 𝑁)) |
45 | 44 | oveq1i 6803 | . . . 4 ⊢ ((𝐾 · 𝐿) mod 𝑁) = ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) |
46 | 34, 45 | eqtri 2793 | . . 3 ⊢ (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) |
47 | 41 | nn0rei 11505 | . . . 4 ⊢ 𝑀 ∈ ℝ |
48 | modcyc 12913 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ∧ 𝐷 ∈ ℤ) → ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) = (𝑀 mod 𝑁)) | |
49 | 47, 27, 36, 48 | mp3an 1572 | . . 3 ⊢ ((𝑀 + (𝐷 · 𝑁)) mod 𝑁) = (𝑀 mod 𝑁) |
50 | 46, 49 | eqtri 2793 | . 2 ⊢ (((𝐴↑𝐵) · (𝐴↑𝐶)) mod 𝑁) = (𝑀 mod 𝑁) |
51 | 10, 50 | eqtri 2793 | 1 ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ⊤wtru 1632 ∈ wcel 2145 (class class class)co 6793 ℂcc 10136 ℝcr 10137 + caddc 10141 · cmul 10143 ℕcn 11222 ℕ0cn0 11494 ℤcz 11579 ℝ+crp 12035 mod cmo 12876 ↑cexp 13067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8504 df-inf 8505 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-n0 11495 df-z 11580 df-uz 11889 df-rp 12036 df-fl 12801 df-mod 12877 df-seq 13009 df-exp 13068 |
This theorem is referenced by: mod2xi 15980 modxp1i 15981 1259lem3 16047 1259lem4 16048 2503lem2 16052 4001lem3 16057 |
Copyright terms: Public domain | W3C validator |