MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modsumfzodifsn Structured version   Visualization version   GIF version

Theorem modsumfzodifsn 12937
Description: The sum of a number within a half-open range of positive integers is an element of the corresponding open range of nonnegative integers with one excluded integer modulo the excluded integer. (Contributed by AV, 19-Mar-2021.)
Assertion
Ref Expression
modsumfzodifsn ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))

Proof of Theorem modsumfzodifsn
StepHypRef Expression
1 elfzo0 12703 . . . . . 6 (𝐽 ∈ (0..^𝑁) ↔ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁))
2 elfzoelz 12664 . . . . . . . . 9 (𝐾 ∈ (1..^𝑁) → 𝐾 ∈ ℤ)
32zred 11674 . . . . . . . 8 (𝐾 ∈ (1..^𝑁) → 𝐾 ∈ ℝ)
4 nn0re 11493 . . . . . . . . 9 (𝐽 ∈ ℕ0𝐽 ∈ ℝ)
543ad2ant1 1128 . . . . . . . 8 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℝ)
6 readdcl 10211 . . . . . . . 8 ((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (𝐾 + 𝐽) ∈ ℝ)
73, 5, 6syl2anr 496 . . . . . . 7 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℝ)
8 nnrp 12035 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
983ad2ant2 1129 . . . . . . . 8 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℝ+)
109adantr 472 . . . . . . 7 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℝ+)
117, 10jca 555 . . . . . 6 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ+))
121, 11sylanb 490 . . . . 5 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ+))
1312adantl 473 . . . 4 (((𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → ((𝐾 + 𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ+))
14 elfzo1 12712 . . . . . . . . 9 (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
15 nnnn0 11491 . . . . . . . . . 10 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
16153ad2ant1 1128 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 𝐾 ∈ ℕ0)
1714, 16sylbi 207 . . . . . . . 8 (𝐾 ∈ (1..^𝑁) → 𝐾 ∈ ℕ0)
18 elfzonn0 12707 . . . . . . . 8 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℕ0)
19 nn0addcl 11520 . . . . . . . 8 ((𝐾 ∈ ℕ0𝐽 ∈ ℕ0) → (𝐾 + 𝐽) ∈ ℕ0)
2017, 18, 19syl2anr 496 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℕ0)
2120adantl 473 . . . . . 6 (((𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → (𝐾 + 𝐽) ∈ ℕ0)
2221nn0ge0d 11546 . . . . 5 (((𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → 0 ≤ (𝐾 + 𝐽))
23 simpl 474 . . . . 5 (((𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → (𝐾 + 𝐽) < 𝑁)
2422, 23jca 555 . . . 4 (((𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → (0 ≤ (𝐾 + 𝐽) ∧ (𝐾 + 𝐽) < 𝑁))
25 modid 12889 . . . 4 ((((𝐾 + 𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (0 ≤ (𝐾 + 𝐽) ∧ (𝐾 + 𝐽) < 𝑁)) → ((𝐾 + 𝐽) mod 𝑁) = (𝐾 + 𝐽))
2613, 24, 25syl2anc 696 . . 3 (((𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → ((𝐾 + 𝐽) mod 𝑁) = (𝐾 + 𝐽))
27 simp2 1132 . . . . . . . 8 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℕ)
281, 27sylbi 207 . . . . . . 7 (𝐽 ∈ (0..^𝑁) → 𝑁 ∈ ℕ)
2928adantr 472 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℕ)
3029adantl 473 . . . . 5 (((𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → 𝑁 ∈ ℕ)
31 elfzo0 12703 . . . . 5 ((𝐾 + 𝐽) ∈ (0..^𝑁) ↔ ((𝐾 + 𝐽) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝐾 + 𝐽) < 𝑁))
3221, 30, 23, 31syl3anbrc 1429 . . . 4 (((𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → (𝐾 + 𝐽) ∈ (0..^𝑁))
332zcnd 11675 . . . . . . . 8 (𝐾 ∈ (1..^𝑁) → 𝐾 ∈ ℂ)
3433adantl 473 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℂ)
35 0cnd 10225 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 0 ∈ ℂ)
36 elfzoelz 12664 . . . . . . . . 9 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
3736zcnd 11675 . . . . . . . 8 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℂ)
3837adantr 472 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈ ℂ)
39 nnne0 11245 . . . . . . . . . 10 (𝐾 ∈ ℕ → 𝐾 ≠ 0)
40393ad2ant1 1128 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 𝐾 ≠ 0)
4114, 40sylbi 207 . . . . . . . 8 (𝐾 ∈ (1..^𝑁) → 𝐾 ≠ 0)
4241adantl 473 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ≠ 0)
4334, 35, 38, 42addneintr2d 10436 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ≠ (0 + 𝐽))
4443adantl 473 . . . . 5 (((𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → (𝐾 + 𝐽) ≠ (0 + 𝐽))
4538adantl 473 . . . . . 6 (((𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → 𝐽 ∈ ℂ)
46 addid2 10411 . . . . . . 7 (𝐽 ∈ ℂ → (0 + 𝐽) = 𝐽)
4746eqcomd 2766 . . . . . 6 (𝐽 ∈ ℂ → 𝐽 = (0 + 𝐽))
4845, 47syl 17 . . . . 5 (((𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → 𝐽 = (0 + 𝐽))
4944, 48neeqtrrd 3006 . . . 4 (((𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → (𝐾 + 𝐽) ≠ 𝐽)
50 eldifsn 4462 . . . 4 ((𝐾 + 𝐽) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ ((𝐾 + 𝐽) ∈ (0..^𝑁) ∧ (𝐾 + 𝐽) ≠ 𝐽))
5132, 49, 50sylanbrc 701 . . 3 (((𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → (𝐾 + 𝐽) ∈ ((0..^𝑁) ∖ {𝐽}))
5226, 51eqeltrd 2839 . 2 (((𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
53 elfzoel2 12663 . . . . . . . . . . . . . 14 (𝐽 ∈ (0..^𝑁) → 𝑁 ∈ ℤ)
5453zcnd 11675 . . . . . . . . . . . . 13 (𝐽 ∈ (0..^𝑁) → 𝑁 ∈ ℂ)
5554adantr 472 . . . . . . . . . . . 12 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℂ)
5655adantl 473 . . . . . . . . . . 11 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → 𝑁 ∈ ℂ)
5756mulm1d 10674 . . . . . . . . . 10 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → (-1 · 𝑁) = -𝑁)
5857oveq2d 6829 . . . . . . . . 9 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → ((𝐾 + 𝐽) + (-1 · 𝑁)) = ((𝐾 + 𝐽) + -𝑁))
59 zaddcl 11609 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐾 + 𝐽) ∈ ℤ)
602, 36, 59syl2anr 496 . . . . . . . . . . . . 13 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℤ)
6160zcnd 11675 . . . . . . . . . . . 12 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℂ)
6261, 55jca 555 . . . . . . . . . . 11 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) ∈ ℂ ∧ 𝑁 ∈ ℂ))
6362adantl 473 . . . . . . . . . 10 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → ((𝐾 + 𝐽) ∈ ℂ ∧ 𝑁 ∈ ℂ))
64 negsub 10521 . . . . . . . . . 10 (((𝐾 + 𝐽) ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐾 + 𝐽) + -𝑁) = ((𝐾 + 𝐽) − 𝑁))
6563, 64syl 17 . . . . . . . . 9 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → ((𝐾 + 𝐽) + -𝑁) = ((𝐾 + 𝐽) − 𝑁))
6658, 65eqtrd 2794 . . . . . . . 8 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → ((𝐾 + 𝐽) + (-1 · 𝑁)) = ((𝐾 + 𝐽) − 𝑁))
6766oveq1d 6828 . . . . . . 7 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → (((𝐾 + 𝐽) + (-1 · 𝑁)) mod 𝑁) = (((𝐾 + 𝐽) − 𝑁) mod 𝑁))
682, 36, 59syl2an 495 . . . . . . . . . . . . 13 ((𝐾 ∈ (1..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐾 + 𝐽) ∈ ℤ)
6968zred 11674 . . . . . . . . . . . 12 ((𝐾 ∈ (1..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐾 + 𝐽) ∈ ℝ)
7069ancoms 468 . . . . . . . . . . 11 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℝ)
7153zred 11674 . . . . . . . . . . . 12 (𝐽 ∈ (0..^𝑁) → 𝑁 ∈ ℝ)
7271adantr 472 . . . . . . . . . . 11 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℝ)
7370, 72resubcld 10650 . . . . . . . . . 10 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) ∈ ℝ)
7473adantl 473 . . . . . . . . 9 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → ((𝐾 + 𝐽) − 𝑁) ∈ ℝ)
7527nnrpd 12063 . . . . . . . . . . . 12 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℝ+)
761, 75sylbi 207 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) → 𝑁 ∈ ℝ+)
7776adantr 472 . . . . . . . . . 10 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℝ+)
7877adantl 473 . . . . . . . . 9 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → 𝑁 ∈ ℝ+)
79 nnre 11219 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
80793ad2ant1 1128 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 𝐾 ∈ ℝ)
8180adantl 473 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ ℕ0𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) → 𝐾 ∈ ℝ)
824adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ ℕ0𝐽 < 𝑁) → 𝐽 ∈ ℝ)
8382adantr 472 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ ℕ0𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) → 𝐽 ∈ ℝ)
84 nnre 11219 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
85843ad2ant2 1129 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℝ)
8685adantl 473 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ ℕ0𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) → 𝑁 ∈ ℝ)
87 simp3 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ∈ ℝ)
8863adant3 1127 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 + 𝐽) ∈ ℝ)
8987, 88lenltd 10375 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑁 ≤ (𝐾 + 𝐽) ↔ ¬ (𝐾 + 𝐽) < 𝑁))
9089biimprd 238 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (¬ (𝐾 + 𝐽) < 𝑁𝑁 ≤ (𝐾 + 𝐽)))
9188, 87subge0d 10809 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ ((𝐾 + 𝐽) − 𝑁) ↔ 𝑁 ≤ (𝐾 + 𝐽)))
9290, 91sylibrd 249 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (¬ (𝐾 + 𝐽) < 𝑁 → 0 ≤ ((𝐾 + 𝐽) − 𝑁)))
9381, 83, 86, 92syl3anc 1477 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ ℕ0𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) → (¬ (𝐾 + 𝐽) < 𝑁 → 0 ≤ ((𝐾 + 𝐽) − 𝑁)))
9482, 80anim12ci 592 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ ℕ0𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) → (𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ))
9584, 84jca 555 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ))
96953ad2ant2 1129 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ))
9796adantl 473 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ ℕ0𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) → (𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ))
98 simpr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ ℕ0𝐽 < 𝑁) → 𝐽 < 𝑁)
99 simp3 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁)
10098, 99anim12ci 592 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ ℕ0𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) → (𝐾 < 𝑁𝐽 < 𝑁))
10194, 97, 100jca31 558 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ ℕ0𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) → (((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ) ∧ (𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ)) ∧ (𝐾 < 𝑁𝐽 < 𝑁)))
102 lt2add 10705 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ) ∧ (𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → ((𝐾 < 𝑁𝐽 < 𝑁) → (𝐾 + 𝐽) < (𝑁 + 𝑁)))
103102imp 444 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ) ∧ (𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ)) ∧ (𝐾 < 𝑁𝐽 < 𝑁)) → (𝐾 + 𝐽) < (𝑁 + 𝑁))
104101, 103syl 17 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ ℕ0𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) → (𝐾 + 𝐽) < (𝑁 + 𝑁))
10580, 82, 6syl2anr 496 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ ℕ0𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) → (𝐾 + 𝐽) ∈ ℝ)
106 ltsubadd 10690 . . . . . . . . . . . . . . . . . 18 (((𝐾 + 𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝐾 + 𝐽) − 𝑁) < 𝑁 ↔ (𝐾 + 𝐽) < (𝑁 + 𝑁)))
107105, 86, 86, 106syl3anc 1477 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ ℕ0𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) → (((𝐾 + 𝐽) − 𝑁) < 𝑁 ↔ (𝐾 + 𝐽) < (𝑁 + 𝑁)))
108104, 107mpbird 247 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ ℕ0𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) → ((𝐾 + 𝐽) − 𝑁) < 𝑁)
10993, 108jctird 568 . . . . . . . . . . . . . . 15 (((𝐽 ∈ ℕ0𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) → (¬ (𝐾 + 𝐽) < 𝑁 → (0 ≤ ((𝐾 + 𝐽) − 𝑁) ∧ ((𝐾 + 𝐽) − 𝑁) < 𝑁)))
110109ex 449 . . . . . . . . . . . . . 14 ((𝐽 ∈ ℕ0𝐽 < 𝑁) → ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (¬ (𝐾 + 𝐽) < 𝑁 → (0 ≤ ((𝐾 + 𝐽) − 𝑁) ∧ ((𝐾 + 𝐽) − 𝑁) < 𝑁))))
11114, 110syl5bi 232 . . . . . . . . . . . . 13 ((𝐽 ∈ ℕ0𝐽 < 𝑁) → (𝐾 ∈ (1..^𝑁) → (¬ (𝐾 + 𝐽) < 𝑁 → (0 ≤ ((𝐾 + 𝐽) − 𝑁) ∧ ((𝐾 + 𝐽) − 𝑁) < 𝑁))))
1121113adant2 1126 . . . . . . . . . . . 12 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐾 ∈ (1..^𝑁) → (¬ (𝐾 + 𝐽) < 𝑁 → (0 ≤ ((𝐾 + 𝐽) − 𝑁) ∧ ((𝐾 + 𝐽) − 𝑁) < 𝑁))))
1131, 112sylbi 207 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ (1..^𝑁) → (¬ (𝐾 + 𝐽) < 𝑁 → (0 ≤ ((𝐾 + 𝐽) − 𝑁) ∧ ((𝐾 + 𝐽) − 𝑁) < 𝑁))))
114113imp 444 . . . . . . . . . 10 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (¬ (𝐾 + 𝐽) < 𝑁 → (0 ≤ ((𝐾 + 𝐽) − 𝑁) ∧ ((𝐾 + 𝐽) − 𝑁) < 𝑁)))
115114impcom 445 . . . . . . . . 9 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → (0 ≤ ((𝐾 + 𝐽) − 𝑁) ∧ ((𝐾 + 𝐽) − 𝑁) < 𝑁))
11674, 78, 115jca31 558 . . . . . . . 8 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → ((((𝐾 + 𝐽) − 𝑁) ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (0 ≤ ((𝐾 + 𝐽) − 𝑁) ∧ ((𝐾 + 𝐽) − 𝑁) < 𝑁)))
117 modid 12889 . . . . . . . 8 (((((𝐾 + 𝐽) − 𝑁) ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (0 ≤ ((𝐾 + 𝐽) − 𝑁) ∧ ((𝐾 + 𝐽) − 𝑁) < 𝑁)) → (((𝐾 + 𝐽) − 𝑁) mod 𝑁) = ((𝐾 + 𝐽) − 𝑁))
118116, 117syl 17 . . . . . . 7 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → (((𝐾 + 𝐽) − 𝑁) mod 𝑁) = ((𝐾 + 𝐽) − 𝑁))
11967, 118eqtrd 2794 . . . . . 6 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → (((𝐾 + 𝐽) + (-1 · 𝑁)) mod 𝑁) = ((𝐾 + 𝐽) − 𝑁))
120119eqcomd 2766 . . . . 5 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → ((𝐾 + 𝐽) − 𝑁) = (((𝐾 + 𝐽) + (-1 · 𝑁)) mod 𝑁))
1211, 9sylbi 207 . . . . . . 7 (𝐽 ∈ (0..^𝑁) → 𝑁 ∈ ℝ+)
122121adantr 472 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℝ+)
123 neg1z 11605 . . . . . . 7 -1 ∈ ℤ
124123a1i 11 . . . . . 6 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → -1 ∈ ℤ)
125 modcyc 12899 . . . . . 6 (((𝐾 + 𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ+ ∧ -1 ∈ ℤ) → (((𝐾 + 𝐽) + (-1 · 𝑁)) mod 𝑁) = ((𝐾 + 𝐽) mod 𝑁))
12670, 122, 124, 125syl2an23an 1534 . . . . 5 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → (((𝐾 + 𝐽) + (-1 · 𝑁)) mod 𝑁) = ((𝐾 + 𝐽) mod 𝑁))
127120, 126eqtrd 2794 . . . 4 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → ((𝐾 + 𝐽) − 𝑁) = ((𝐾 + 𝐽) mod 𝑁))
128127eqcomd 2766 . . 3 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → ((𝐾 + 𝐽) mod 𝑁) = ((𝐾 + 𝐽) − 𝑁))
12953adantr 472 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℤ)
13060, 129zsubcld 11679 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) ∈ ℤ)
131130adantl 473 . . . . . 6 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → ((𝐾 + 𝐽) − 𝑁) ∈ ℤ)
1323adantl 473 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐾 ∈ ℝ)
13336zred 11674 . . . . . . . . 9 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℝ)
134133adantr 472 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → 𝐽 ∈ ℝ)
13591biimprd 238 . . . . . . . . 9 ((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑁 ≤ (𝐾 + 𝐽) → 0 ≤ ((𝐾 + 𝐽) − 𝑁)))
13689, 135sylbird 250 . . . . . . . 8 ((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (¬ (𝐾 + 𝐽) < 𝑁 → 0 ≤ ((𝐾 + 𝐽) − 𝑁)))
137132, 134, 72, 136syl3anc 1477 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (¬ (𝐾 + 𝐽) < 𝑁 → 0 ≤ ((𝐾 + 𝐽) − 𝑁)))
138137impcom 445 . . . . . 6 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → 0 ≤ ((𝐾 + 𝐽) − 𝑁))
139 elnn0z 11582 . . . . . 6 (((𝐾 + 𝐽) − 𝑁) ∈ ℕ0 ↔ (((𝐾 + 𝐽) − 𝑁) ∈ ℤ ∧ 0 ≤ ((𝐾 + 𝐽) − 𝑁)))
140131, 138, 139sylanbrc 701 . . . . 5 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → ((𝐾 + 𝐽) − 𝑁) ∈ ℕ0)
14129adantl 473 . . . . 5 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → 𝑁 ∈ ℕ)
142101expcom 450 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝐽 ∈ ℕ0𝐽 < 𝑁) → (((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ) ∧ (𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ)) ∧ (𝐾 < 𝑁𝐽 < 𝑁))))
14314, 142sylbi 207 . . . . . . . . . . . 12 (𝐾 ∈ (1..^𝑁) → ((𝐽 ∈ ℕ0𝐽 < 𝑁) → (((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ) ∧ (𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ)) ∧ (𝐾 < 𝑁𝐽 < 𝑁))))
144143com12 32 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0𝐽 < 𝑁) → (𝐾 ∈ (1..^𝑁) → (((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ) ∧ (𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ)) ∧ (𝐾 < 𝑁𝐽 < 𝑁))))
1451443adant2 1126 . . . . . . . . . 10 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐾 ∈ (1..^𝑁) → (((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ) ∧ (𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ)) ∧ (𝐾 < 𝑁𝐽 < 𝑁))))
1461, 145sylbi 207 . . . . . . . . 9 (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ (1..^𝑁) → (((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ) ∧ (𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ)) ∧ (𝐾 < 𝑁𝐽 < 𝑁))))
147146imp 444 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ) ∧ (𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ)) ∧ (𝐾 < 𝑁𝐽 < 𝑁)))
148147, 103syl 17 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) < (𝑁 + 𝑁))
1494adantr 472 . . . . . . . . . . . . . 14 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → 𝐽 ∈ ℝ)
1503, 149, 6syl2anr 496 . . . . . . . . . . . . 13 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 + 𝐽) ∈ ℝ)
15184adantl 473 . . . . . . . . . . . . . 14 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
152151adantr 472 . . . . . . . . . . . . 13 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾 ∈ (1..^𝑁)) → 𝑁 ∈ ℝ)
153150, 152, 1523jca 1123 . . . . . . . . . . . 12 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ))
154153ex 449 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾 ∈ (1..^𝑁) → ((𝐾 + 𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ)))
1551543adant3 1127 . . . . . . . . . 10 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐾 ∈ (1..^𝑁) → ((𝐾 + 𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ)))
1561, 155sylbi 207 . . . . . . . . 9 (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ (1..^𝑁) → ((𝐾 + 𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ)))
157156imp 444 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ))
158157, 106syl 17 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (((𝐾 + 𝐽) − 𝑁) < 𝑁 ↔ (𝐾 + 𝐽) < (𝑁 + 𝑁)))
159148, 158mpbird 247 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) − 𝑁) < 𝑁)
160159adantl 473 . . . . 5 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → ((𝐾 + 𝐽) − 𝑁) < 𝑁)
161 elfzo0 12703 . . . . 5 (((𝐾 + 𝐽) − 𝑁) ∈ (0..^𝑁) ↔ (((𝐾 + 𝐽) − 𝑁) ∈ ℕ0𝑁 ∈ ℕ ∧ ((𝐾 + 𝐽) − 𝑁) < 𝑁))
162140, 141, 160, 161syl3anbrc 1429 . . . 4 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → ((𝐾 + 𝐽) − 𝑁) ∈ (0..^𝑁))
163 nncn 11220 . . . . . . . . . . 11 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
164 nncn 11220 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
165 subcl 10472 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾𝑁) ∈ ℂ)
166163, 164, 165syl2an 495 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾𝑁) ∈ ℂ)
1671663adant3 1127 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝐾𝑁) ∈ ℂ)
16814, 167sylbi 207 . . . . . . . 8 (𝐾 ∈ (1..^𝑁) → (𝐾𝑁) ∈ ℂ)
169168adantl 473 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾𝑁) ∈ ℂ)
170169adantl 473 . . . . . 6 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → (𝐾𝑁) ∈ ℂ)
171 0cnd 10225 . . . . . 6 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → 0 ∈ ℂ)
17238adantl 473 . . . . . 6 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → 𝐽 ∈ ℂ)
173 elfzoel2 12663 . . . . . . . . . 10 (𝐾 ∈ (1..^𝑁) → 𝑁 ∈ ℤ)
174173zcnd 11675 . . . . . . . . 9 (𝐾 ∈ (1..^𝑁) → 𝑁 ∈ ℂ)
17580, 99ltned 10365 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 𝐾𝑁)
17614, 175sylbi 207 . . . . . . . . 9 (𝐾 ∈ (1..^𝑁) → 𝐾𝑁)
17733, 174, 176subne0d 10593 . . . . . . . 8 (𝐾 ∈ (1..^𝑁) → (𝐾𝑁) ≠ 0)
178177adantl 473 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾𝑁) ≠ 0)
179178adantl 473 . . . . . 6 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → (𝐾𝑁) ≠ 0)
180170, 171, 172, 179addneintr2d 10436 . . . . 5 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → ((𝐾𝑁) + 𝐽) ≠ (0 + 𝐽))
18134, 38, 553jca 1123 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ))
182181adantl 473 . . . . . 6 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ))
183 addsub 10484 . . . . . 6 ((𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐾 + 𝐽) − 𝑁) = ((𝐾𝑁) + 𝐽))
184182, 183syl 17 . . . . 5 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → ((𝐾 + 𝐽) − 𝑁) = ((𝐾𝑁) + 𝐽))
185172, 46syl 17 . . . . . 6 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → (0 + 𝐽) = 𝐽)
186185eqcomd 2766 . . . . 5 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → 𝐽 = (0 + 𝐽))
187180, 184, 1863netr4d 3009 . . . 4 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → ((𝐾 + 𝐽) − 𝑁) ≠ 𝐽)
188 eldifsn 4462 . . . 4 (((𝐾 + 𝐽) − 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ (((𝐾 + 𝐽) − 𝑁) ∈ (0..^𝑁) ∧ ((𝐾 + 𝐽) − 𝑁) ≠ 𝐽))
189162, 187, 188sylanbrc 701 . . 3 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → ((𝐾 + 𝐽) − 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
190128, 189eqeltrd 2839 . 2 ((¬ (𝐾 + 𝐽) < 𝑁 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁))) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
19152, 190pm2.61ian 866 1 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  cdif 3712  {csn 4321   class class class wbr 4804  (class class class)co 6813  cc 10126  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133   < clt 10266  cle 10267  cmin 10458  -cneg 10459  cn 11212  0cn0 11484  cz 11569  +crp 12025  ..^cfzo 12659   mod cmo 12862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863
This theorem is referenced by:  cshimadifsn  13775
  Copyright terms: Public domain W3C validator