![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > modom | Structured version Visualization version GIF version |
Description: Two ways to express "at most one". (Contributed by Stefan O'Rear, 28-Oct-2014.) |
Ref | Expression |
---|---|
modom | ⊢ (∃*𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≼ 1𝑜) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mo 2503 | . 2 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
2 | imor 427 | . 2 ⊢ ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑)) | |
3 | abn0 3987 | . . . . . 6 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) | |
4 | 3 | necon1bbii 2872 | . . . . 5 ⊢ (¬ ∃𝑥𝜑 ↔ {𝑥 ∣ 𝜑} = ∅) |
5 | sdom1 8201 | . . . . 5 ⊢ ({𝑥 ∣ 𝜑} ≺ 1𝑜 ↔ {𝑥 ∣ 𝜑} = ∅) | |
6 | 4, 5 | bitr4i 267 | . . . 4 ⊢ (¬ ∃𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≺ 1𝑜) |
7 | euen1 8067 | . . . 4 ⊢ (∃!𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≈ 1𝑜) | |
8 | 6, 7 | orbi12i 542 | . . 3 ⊢ ((¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑) ↔ ({𝑥 ∣ 𝜑} ≺ 1𝑜 ∨ {𝑥 ∣ 𝜑} ≈ 1𝑜)) |
9 | brdom2 8027 | . . 3 ⊢ ({𝑥 ∣ 𝜑} ≼ 1𝑜 ↔ ({𝑥 ∣ 𝜑} ≺ 1𝑜 ∨ {𝑥 ∣ 𝜑} ≈ 1𝑜)) | |
10 | 8, 9 | bitr4i 267 | . 2 ⊢ ((¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑) ↔ {𝑥 ∣ 𝜑} ≼ 1𝑜) |
11 | 1, 2, 10 | 3bitri 286 | 1 ⊢ (∃*𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≼ 1𝑜) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 = wceq 1523 ∃wex 1744 ∃!weu 2498 ∃*wmo 2499 {cab 2637 ∅c0 3948 class class class wbr 4685 1𝑜c1o 7598 ≈ cen 7994 ≼ cdom 7995 ≺ csdm 7996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-om 7108 df-1o 7605 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 |
This theorem is referenced by: modom2 8203 |
Copyright terms: Public domain | W3C validator |