MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modmulconst Structured version   Visualization version   GIF version

Theorem modmulconst 15222
Description: Constant multiplication in a modulo operation, see theorem 5.3 in [ApostolNT] p. 108. (Contributed by AV, 21-Jul-2021.)
Assertion
Ref Expression
modmulconst (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ ((𝐶 · 𝐴) mod (𝐶 · 𝑀)) = ((𝐶 · 𝐵) mod (𝐶 · 𝑀))))

Proof of Theorem modmulconst
StepHypRef Expression
1 nnz 11606 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
21adantl 467 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℤ)
3 zsubcl 11626 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
433adant3 1126 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐴𝐵) ∈ ℤ)
54adantr 466 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐴𝐵) ∈ ℤ)
6 nnz 11606 . . . . . . 7 (𝐶 ∈ ℕ → 𝐶 ∈ ℤ)
7 nnne0 11259 . . . . . . 7 (𝐶 ∈ ℕ → 𝐶 ≠ 0)
86, 7jca 501 . . . . . 6 (𝐶 ∈ ℕ → (𝐶 ∈ ℤ ∧ 𝐶 ≠ 0))
983ad2ant3 1129 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶 ∈ ℤ ∧ 𝐶 ≠ 0))
109adantr 466 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐶 ∈ ℤ ∧ 𝐶 ≠ 0))
11 dvdscmulr 15219 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝑀) ∥ (𝐶 · (𝐴𝐵)) ↔ 𝑀 ∥ (𝐴𝐵)))
1211bicomd 213 . . . 4 ((𝑀 ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐶 ≠ 0)) → (𝑀 ∥ (𝐴𝐵) ↔ (𝐶 · 𝑀) ∥ (𝐶 · (𝐴𝐵))))
132, 5, 10, 12syl3anc 1476 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ (𝐴𝐵) ↔ (𝐶 · 𝑀) ∥ (𝐶 · (𝐴𝐵))))
14 zcn 11589 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
15 zcn 11589 . . . . . . . 8 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
16 nncn 11234 . . . . . . . 8 (𝐶 ∈ ℕ → 𝐶 ∈ ℂ)
1714, 15, 163anim123i 1154 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
18 3anrot 1086 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ↔ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
1917, 18sylibr 224 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
20 subdi 10669 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 · (𝐴𝐵)) = ((𝐶 · 𝐴) − (𝐶 · 𝐵)))
2119, 20syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶 · (𝐴𝐵)) = ((𝐶 · 𝐴) − (𝐶 · 𝐵)))
2221adantr 466 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐶 · (𝐴𝐵)) = ((𝐶 · 𝐴) − (𝐶 · 𝐵)))
2322breq2d 4799 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → ((𝐶 · 𝑀) ∥ (𝐶 · (𝐴𝐵)) ↔ (𝐶 · 𝑀) ∥ ((𝐶 · 𝐴) − (𝐶 · 𝐵))))
2413, 23bitrd 268 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ (𝐴𝐵) ↔ (𝐶 · 𝑀) ∥ ((𝐶 · 𝐴) − (𝐶 · 𝐵))))
25 simpr 471 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
26 simp1 1130 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℤ)
2726adantr 466 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → 𝐴 ∈ ℤ)
28 simp2 1131 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℤ)
2928adantr 466 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → 𝐵 ∈ ℤ)
30 moddvds 15200 . . 3 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ 𝑀 ∥ (𝐴𝐵)))
3125, 27, 29, 30syl3anc 1476 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ 𝑀 ∥ (𝐴𝐵)))
32 simpl3 1231 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → 𝐶 ∈ ℕ)
3332, 25nnmulcld 11274 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐶 · 𝑀) ∈ ℕ)
3463ad2ant3 1129 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℤ)
3534, 26zmulcld 11695 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶 · 𝐴) ∈ ℤ)
3635adantr 466 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐶 · 𝐴) ∈ ℤ)
3734, 28zmulcld 11695 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶 · 𝐵) ∈ ℤ)
3837adantr 466 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐶 · 𝐵) ∈ ℤ)
39 moddvds 15200 . . 3 (((𝐶 · 𝑀) ∈ ℕ ∧ (𝐶 · 𝐴) ∈ ℤ ∧ (𝐶 · 𝐵) ∈ ℤ) → (((𝐶 · 𝐴) mod (𝐶 · 𝑀)) = ((𝐶 · 𝐵) mod (𝐶 · 𝑀)) ↔ (𝐶 · 𝑀) ∥ ((𝐶 · 𝐴) − (𝐶 · 𝐵))))
4033, 36, 38, 39syl3anc 1476 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (((𝐶 · 𝐴) mod (𝐶 · 𝑀)) = ((𝐶 · 𝐵) mod (𝐶 · 𝑀)) ↔ (𝐶 · 𝑀) ∥ ((𝐶 · 𝐴) − (𝐶 · 𝐵))))
4124, 31, 403bitr4d 300 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ ((𝐶 · 𝐴) mod (𝐶 · 𝑀)) = ((𝐶 · 𝐵) mod (𝐶 · 𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943   class class class wbr 4787  (class class class)co 6796  cc 10140  0cc0 10142   · cmul 10147  cmin 10472  cn 11226  cz 11584   mod cmo 12876  cdvds 15189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8508  df-inf 8509  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-n0 11500  df-z 11585  df-uz 11894  df-rp 12036  df-fl 12801  df-mod 12877  df-dvds 15190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator