![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > modm1p1mod0 | Structured version Visualization version GIF version |
Description: If an real number modulo a positive real number equals the positive real number decreased by 1, the real number increased by 1 modulo the positive real number equals 0. (Contributed by AV, 2-Nov-2018.) |
Ref | Expression |
---|---|
modm1p1mod0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = (𝑀 − 1) → ((𝐴 + 1) mod 𝑀) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 10241 | . . . . . 6 ⊢ 1 ∈ ℝ | |
2 | modaddmod 12917 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀)) | |
3 | 1, 2 | mp3an2 1560 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀)) |
4 | 3 | eqcomd 2777 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 + 1) mod 𝑀) = (((𝐴 mod 𝑀) + 1) mod 𝑀)) |
5 | 4 | adantr 466 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → ((𝐴 + 1) mod 𝑀) = (((𝐴 mod 𝑀) + 1) mod 𝑀)) |
6 | oveq1 6800 | . . . . 5 ⊢ ((𝐴 mod 𝑀) = (𝑀 − 1) → ((𝐴 mod 𝑀) + 1) = ((𝑀 − 1) + 1)) | |
7 | 6 | oveq1d 6808 | . . . 4 ⊢ ((𝐴 mod 𝑀) = (𝑀 − 1) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = (((𝑀 − 1) + 1) mod 𝑀)) |
8 | rpcn 12044 | . . . . . . . 8 ⊢ (𝑀 ∈ ℝ+ → 𝑀 ∈ ℂ) | |
9 | npcan1 10657 | . . . . . . . 8 ⊢ (𝑀 ∈ ℂ → ((𝑀 − 1) + 1) = 𝑀) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝑀 ∈ ℝ+ → ((𝑀 − 1) + 1) = 𝑀) |
11 | 10 | oveq1d 6808 | . . . . . 6 ⊢ (𝑀 ∈ ℝ+ → (((𝑀 − 1) + 1) mod 𝑀) = (𝑀 mod 𝑀)) |
12 | modid0 12904 | . . . . . 6 ⊢ (𝑀 ∈ ℝ+ → (𝑀 mod 𝑀) = 0) | |
13 | 11, 12 | eqtrd 2805 | . . . . 5 ⊢ (𝑀 ∈ ℝ+ → (((𝑀 − 1) + 1) mod 𝑀) = 0) |
14 | 13 | adantl 467 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝑀 − 1) + 1) mod 𝑀) = 0) |
15 | 7, 14 | sylan9eqr 2827 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = 0) |
16 | 5, 15 | eqtrd 2805 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → ((𝐴 + 1) mod 𝑀) = 0) |
17 | 16 | ex 397 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = (𝑀 − 1) → ((𝐴 + 1) mod 𝑀) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 (class class class)co 6793 ℂcc 10136 ℝcr 10137 0cc0 10138 1c1 10139 + caddc 10141 − cmin 10468 ℝ+crp 12035 mod cmo 12876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8504 df-inf 8505 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-n0 11495 df-z 11580 df-uz 11889 df-rp 12036 df-fl 12801 df-mod 12877 |
This theorem is referenced by: clwwisshclwwslemlem 27163 |
Copyright terms: Public domain | W3C validator |