MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modltm1p1mod Structured version   Visualization version   GIF version

Theorem modltm1p1mod 12916
Description: If a real number modulo a positive real number is less than the positive real number decreased by 1, the real number increased by 1 modulo the positive real number equals the real number modulo the positive real number increased by 1. (Contributed by AV, 2-Nov-2018.)
Assertion
Ref Expression
modltm1p1mod ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ (𝐴 mod 𝑀) < (𝑀 − 1)) → ((𝐴 + 1) mod 𝑀) = ((𝐴 mod 𝑀) + 1))

Proof of Theorem modltm1p1mod
StepHypRef Expression
1 simpl 474 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 𝐴 ∈ ℝ)
2 1red 10247 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 1 ∈ ℝ)
3 simpr 479 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ+)
41, 2, 33jca 1123 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+))
543adant3 1127 . . 3 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ (𝐴 mod 𝑀) < (𝑀 − 1)) → (𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+))
6 modaddmod 12903 . . 3 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀))
75, 6syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ (𝐴 mod 𝑀) < (𝑀 − 1)) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀))
8 modcl 12866 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ ℝ)
9 peano2re 10401 . . . . . 6 ((𝐴 mod 𝑀) ∈ ℝ → ((𝐴 mod 𝑀) + 1) ∈ ℝ)
108, 9syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) + 1) ∈ ℝ)
1110, 3jca 555 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) + 1) ∈ ℝ ∧ 𝑀 ∈ ℝ+))
12113adant3 1127 . . 3 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ (𝐴 mod 𝑀) < (𝑀 − 1)) → (((𝐴 mod 𝑀) + 1) ∈ ℝ ∧ 𝑀 ∈ ℝ+))
13 0red 10233 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 0 ∈ ℝ)
14 modge0 12872 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 0 ≤ (𝐴 mod 𝑀))
158lep1d 11147 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ≤ ((𝐴 mod 𝑀) + 1))
1613, 8, 10, 14, 15letrd 10386 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 0 ≤ ((𝐴 mod 𝑀) + 1))
17163adant3 1127 . . 3 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ (𝐴 mod 𝑀) < (𝑀 − 1)) → 0 ≤ ((𝐴 mod 𝑀) + 1))
18 rpre 12032 . . . . . 6 (𝑀 ∈ ℝ+𝑀 ∈ ℝ)
1918adantl 473 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ)
208, 2, 19ltaddsubd 10819 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((𝐴 mod 𝑀) + 1) < 𝑀 ↔ (𝐴 mod 𝑀) < (𝑀 − 1)))
2120biimp3ar 1582 . . 3 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ (𝐴 mod 𝑀) < (𝑀 − 1)) → ((𝐴 mod 𝑀) + 1) < 𝑀)
22 modid 12889 . . 3 (((((𝐴 mod 𝑀) + 1) ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (0 ≤ ((𝐴 mod 𝑀) + 1) ∧ ((𝐴 mod 𝑀) + 1) < 𝑀)) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 mod 𝑀) + 1))
2312, 17, 21, 22syl12anc 1475 . 2 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ (𝐴 mod 𝑀) < (𝑀 − 1)) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 mod 𝑀) + 1))
247, 23eqtr3d 2796 1 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ (𝐴 mod 𝑀) < (𝑀 − 1)) → ((𝐴 + 1) mod 𝑀) = ((𝐴 mod 𝑀) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139   class class class wbr 4804  (class class class)co 6813  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   < clt 10266  cle 10267  cmin 10458  +crp 12025   mod cmo 12862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-fl 12787  df-mod 12863
This theorem is referenced by:  clwwisshclwwslemlem  27136
  Copyright terms: Public domain W3C validator