MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modfzo0difsn Structured version   Visualization version   GIF version

Theorem modfzo0difsn 12782
Description: For a number within a half-open range of nonnegative integers with one excluded integer there is a positive integer so that the number is equal to the sum of the positive integer and the excluded integer modulo the upper bound of the range. (Contributed by AV, 19-Mar-2021.)
Assertion
Ref Expression
modfzo0difsn ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))
Distinct variable groups:   𝑖,𝐽   𝑖,𝐾   𝑖,𝑁

Proof of Theorem modfzo0difsn
StepHypRef Expression
1 eldifi 3765 . . . . . 6 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → 𝐾 ∈ (0..^𝑁))
2 elfzoelz 12509 . . . . . . 7 (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℤ)
32zred 11520 . . . . . 6 (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℝ)
41, 3syl 17 . . . . 5 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → 𝐾 ∈ ℝ)
5 elfzoelz 12509 . . . . . 6 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
65zred 11520 . . . . 5 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℝ)
7 leloe 10162 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (𝐾𝐽 ↔ (𝐾 < 𝐽𝐾 = 𝐽)))
84, 6, 7syl2anr 494 . . . 4 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾𝐽 ↔ (𝐾 < 𝐽𝐾 = 𝐽)))
9 elfzo0 12548 . . . . . . . . . . . 12 (𝐾 ∈ (0..^𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
10 elfzo0 12548 . . . . . . . . . . . . . . 15 (𝐽 ∈ (0..^𝑁) ↔ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁))
11 nn0cn 11340 . . . . . . . . . . . . . . . . . . . . . 22 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
1211adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → 𝐾 ∈ ℂ)
1312adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝐾 ∈ ℂ)
14 nn0cn 11340 . . . . . . . . . . . . . . . . . . . . . 22 (𝐽 ∈ ℕ0𝐽 ∈ ℂ)
15143ad2ant1 1102 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℂ)
1615adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝐽 ∈ ℂ)
17 nncn 11066 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
18173ad2ant2 1103 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℂ)
1918adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝑁 ∈ ℂ)
2013, 16, 19subadd23d 10452 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → ((𝐾𝐽) + 𝑁) = (𝐾 + (𝑁𝐽)))
21 simpl 472 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → 𝐾 ∈ ℕ0)
22 nn0z 11438 . . . . . . . . . . . . . . . . . . . . . 22 (𝐽 ∈ ℕ0𝐽 ∈ ℤ)
23 nnz 11437 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
24 znnsub 11461 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 < 𝑁 ↔ (𝑁𝐽) ∈ ℕ))
2522, 23, 24syl2an 493 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐽 < 𝑁 ↔ (𝑁𝐽) ∈ ℕ))
2625biimp3a 1472 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝑁𝐽) ∈ ℕ)
27 nn0nnaddcl 11362 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℕ0 ∧ (𝑁𝐽) ∈ ℕ) → (𝐾 + (𝑁𝐽)) ∈ ℕ)
2821, 26, 27syl2anr 494 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → (𝐾 + (𝑁𝐽)) ∈ ℕ)
2920, 28eqeltrd 2730 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → ((𝐾𝐽) + 𝑁) ∈ ℕ)
3029adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾𝐽) + 𝑁) ∈ ℕ)
31 simp2 1082 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℕ)
3231adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝑁 ∈ ℕ)
3332adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → 𝑁 ∈ ℕ)
34 nn0re 11339 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
3534adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → 𝐾 ∈ ℝ)
3635adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝐾 ∈ ℝ)
37 nn0re 11339 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 ∈ ℕ0𝐽 ∈ ℝ)
38373ad2ant1 1102 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℝ)
3938adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝐽 ∈ ℝ)
4036, 39sublt0d 10691 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → ((𝐾𝐽) < 0 ↔ 𝐾 < 𝐽))
4140bicomd 213 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → (𝐾 < 𝐽 ↔ (𝐾𝐽) < 0))
4241biimpa 500 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → (𝐾𝐽) < 0)
43 resubcl 10383 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (𝐾𝐽) ∈ ℝ)
4435, 38, 43syl2anr 494 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → (𝐾𝐽) ∈ ℝ)
45 nnre 11065 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
46453ad2ant2 1103 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℝ)
4746adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝑁 ∈ ℝ)
4844, 47jca 553 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → ((𝐾𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ))
4948adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ))
50 ltaddnegr 10290 . . . . . . . . . . . . . . . . . . 19 (((𝐾𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐾𝐽) < 0 ↔ ((𝐾𝐽) + 𝑁) < 𝑁))
5149, 50syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾𝐽) < 0 ↔ ((𝐾𝐽) + 𝑁) < 𝑁))
5242, 51mpbid 222 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾𝐽) + 𝑁) < 𝑁)
53 elfzo1 12557 . . . . . . . . . . . . . . . . 17 (((𝐾𝐽) + 𝑁) ∈ (1..^𝑁) ↔ (((𝐾𝐽) + 𝑁) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ((𝐾𝐽) + 𝑁) < 𝑁))
5430, 33, 52, 53syl3anbrc 1265 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))
5554exp31 629 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → ((𝐾 ∈ ℕ0𝐾 < 𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
5610, 55sylbi 207 . . . . . . . . . . . . . 14 (𝐽 ∈ (0..^𝑁) → ((𝐾 ∈ ℕ0𝐾 < 𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
5756com12 32 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → (𝐽 ∈ (0..^𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
58573adant2 1100 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝐽 ∈ (0..^𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
599, 58sylbi 207 . . . . . . . . . . 11 (𝐾 ∈ (0..^𝑁) → (𝐽 ∈ (0..^𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
601, 59syl 17 . . . . . . . . . 10 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐽 ∈ (0..^𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
6160impcom 445 . . . . . . . . 9 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁)))
6261impcom 445 . . . . . . . 8 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))
63 oveq1 6697 . . . . . . . . . . 11 (𝑖 = ((𝐾𝐽) + 𝑁) → (𝑖 + 𝐽) = (((𝐾𝐽) + 𝑁) + 𝐽))
642zcnd 11521 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℂ)
6564adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ (0..^𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ)) → 𝐾 ∈ ℂ)
6614adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → 𝐽 ∈ ℂ)
6766adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ (0..^𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ)) → 𝐽 ∈ ℂ)
6817adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
6968adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ (0..^𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ)
7065, 67, 693jca 1261 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ (0..^𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ)) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ))
7170ex 449 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (0..^𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
721, 71syl 17 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
7372com12 32 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
74733adant3 1101 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
7510, 74sylbi 207 . . . . . . . . . . . . . 14 (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
7675imp 444 . . . . . . . . . . . . 13 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ))
7776adantl 481 . . . . . . . . . . . 12 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ))
78 nppcan 10341 . . . . . . . . . . . 12 ((𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((𝐾𝐽) + 𝑁) + 𝐽) = (𝐾 + 𝑁))
7977, 78syl 17 . . . . . . . . . . 11 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (((𝐾𝐽) + 𝑁) + 𝐽) = (𝐾 + 𝑁))
8063, 79sylan9eqr 2707 . . . . . . . . . 10 (((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = ((𝐾𝐽) + 𝑁)) → (𝑖 + 𝐽) = (𝐾 + 𝑁))
8180oveq1d 6705 . . . . . . . . 9 (((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = ((𝐾𝐽) + 𝑁)) → ((𝑖 + 𝐽) mod 𝑁) = ((𝐾 + 𝑁) mod 𝑁))
8281eqeq2d 2661 . . . . . . . 8 (((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = ((𝐾𝐽) + 𝑁)) → (𝐾 = ((𝑖 + 𝐽) mod 𝑁) ↔ 𝐾 = ((𝐾 + 𝑁) mod 𝑁)))
839biimpi 206 . . . . . . . . . . . . 13 (𝐾 ∈ (0..^𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
8483a1d 25 . . . . . . . . . . . 12 (𝐾 ∈ (0..^𝑁) → (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)))
851, 84syl 17 . . . . . . . . . . 11 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)))
8685impcom 445 . . . . . . . . . 10 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
8786adantl 481 . . . . . . . . 9 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
88 addmodidr 12759 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝐾 + 𝑁) mod 𝑁) = 𝐾)
8988eqcomd 2657 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 𝐾 = ((𝐾 + 𝑁) mod 𝑁))
9087, 89syl 17 . . . . . . . 8 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → 𝐾 = ((𝐾 + 𝑁) mod 𝑁))
9162, 82, 90rspcedvd 3348 . . . . . . 7 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))
9291ex 449 . . . . . 6 (𝐾 < 𝐽 → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
93 eldifsn 4350 . . . . . . . . 9 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) ↔ (𝐾 ∈ (0..^𝑁) ∧ 𝐾𝐽))
94 eqneqall 2834 . . . . . . . . . . 11 (𝐾 = 𝐽 → (𝐾𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
9594com12 32 . . . . . . . . . 10 (𝐾𝐽 → (𝐾 = 𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
9695adantl 481 . . . . . . . . 9 ((𝐾 ∈ (0..^𝑁) ∧ 𝐾𝐽) → (𝐾 = 𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
9793, 96sylbi 207 . . . . . . . 8 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 = 𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
9897adantl 481 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 = 𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
9998com12 32 . . . . . 6 (𝐾 = 𝐽 → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
10092, 99jaoi 393 . . . . 5 ((𝐾 < 𝐽𝐾 = 𝐽) → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
101100com12 32 . . . 4 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ((𝐾 < 𝐽𝐾 = 𝐽) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
1028, 101sylbid 230 . . 3 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
103102com12 32 . 2 (𝐾𝐽 → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
104 ltnle 10155 . . . . . . . . 9 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝐽 < 𝐾 ↔ ¬ 𝐾𝐽))
1056, 4, 104syl2an 493 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐽 < 𝐾 ↔ ¬ 𝐾𝐽))
106105bicomd 213 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (¬ 𝐾𝐽𝐽 < 𝐾))
107223ad2ant1 1102 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℤ)
108 nn0z 11438 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
109108adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → 𝐾 ∈ ℤ)
110 znnsub 11461 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 < 𝐾 ↔ (𝐾𝐽) ∈ ℕ))
111107, 109, 110syl2anr 494 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐽 < 𝐾 ↔ (𝐾𝐽) ∈ ℕ))
112111biimpa 500 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) ∧ 𝐽 < 𝐾) → (𝐾𝐽) ∈ ℕ)
11331adantl 481 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ∈ ℕ)
114113adantr 480 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) ∧ 𝐽 < 𝐾) → 𝑁 ∈ ℕ)
115 nn0ge0 11356 . . . . . . . . . . . . . . . . . . . . . 22 (𝐽 ∈ ℕ0 → 0 ≤ 𝐽)
1161153ad2ant1 1102 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 0 ≤ 𝐽)
117116adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 0 ≤ 𝐽)
118 subge02 10582 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (0 ≤ 𝐽 ↔ (𝐾𝐽) ≤ 𝐾))
11934, 38, 118syl2an 493 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (0 ≤ 𝐽 ↔ (𝐾𝐽) ≤ 𝐾))
120117, 119mpbid 222 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐾𝐽) ≤ 𝐾)
12138adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐽 ∈ ℝ)
12234adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐾 ∈ ℝ)
12346adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ∈ ℝ)
124121, 122, 1233jca 1261 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
12543ancoms 468 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝐾𝐽) ∈ ℝ)
1261253adant3 1101 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾𝐽) ∈ ℝ)
127 simp2 1082 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝐾 ∈ ℝ)
128 simp3 1083 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ∈ ℝ)
129126, 127, 1283jca 1261 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐾𝐽) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
130124, 129syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → ((𝐾𝐽) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
131 lelttr 10166 . . . . . . . . . . . . . . . . . . . 20 (((𝐾𝐽) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝐾𝐽) ≤ 𝐾𝐾 < 𝑁) → (𝐾𝐽) < 𝑁))
132130, 131syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (((𝐾𝐽) ≤ 𝐾𝐾 < 𝑁) → (𝐾𝐽) < 𝑁))
133120, 132mpand 711 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐾 < 𝑁 → (𝐾𝐽) < 𝑁))
134133impancom 455 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐾𝐽) < 𝑁))
135134imp 444 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐾𝐽) < 𝑁)
136135adantr 480 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) ∧ 𝐽 < 𝐾) → (𝐾𝐽) < 𝑁)
137112, 114, 1363jca 1261 . . . . . . . . . . . . . 14 ((((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) ∧ 𝐽 < 𝐾) → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))
138137exp31 629 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
1391383adant2 1100 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
1409, 139sylbi 207 . . . . . . . . . . 11 (𝐾 ∈ (0..^𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
1411, 140syl 17 . . . . . . . . . 10 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
142141com12 32 . . . . . . . . 9 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
14310, 142sylbi 207 . . . . . . . 8 (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
144143imp 444 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁)))
145106, 144sylbid 230 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (¬ 𝐾𝐽 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁)))
146145impcom 445 . . . . 5 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))
147 elfzo1 12557 . . . . 5 ((𝐾𝐽) ∈ (1..^𝑁) ↔ ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))
148146, 147sylibr 224 . . . 4 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (𝐾𝐽) ∈ (1..^𝑁))
149 oveq1 6697 . . . . . . 7 (𝑖 = (𝐾𝐽) → (𝑖 + 𝐽) = ((𝐾𝐽) + 𝐽))
1501, 64syl 17 . . . . . . . . 9 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → 𝐾 ∈ ℂ)
1515zcnd 11521 . . . . . . . . 9 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℂ)
152 npcan 10328 . . . . . . . . 9 ((𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ) → ((𝐾𝐽) + 𝐽) = 𝐾)
153150, 151, 152syl2anr 494 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ((𝐾𝐽) + 𝐽) = 𝐾)
154153adantl 481 . . . . . . 7 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ((𝐾𝐽) + 𝐽) = 𝐾)
155149, 154sylan9eqr 2707 . . . . . 6 (((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = (𝐾𝐽)) → (𝑖 + 𝐽) = 𝐾)
156155oveq1d 6705 . . . . 5 (((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = (𝐾𝐽)) → ((𝑖 + 𝐽) mod 𝑁) = (𝐾 mod 𝑁))
157156eqeq2d 2661 . . . 4 (((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = (𝐾𝐽)) → (𝐾 = ((𝑖 + 𝐽) mod 𝑁) ↔ 𝐾 = (𝐾 mod 𝑁)))
158 zmodidfzoimp 12740 . . . . . . . 8 (𝐾 ∈ (0..^𝑁) → (𝐾 mod 𝑁) = 𝐾)
1591, 158syl 17 . . . . . . 7 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 mod 𝑁) = 𝐾)
160159adantl 481 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 mod 𝑁) = 𝐾)
161160adantl 481 . . . . 5 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (𝐾 mod 𝑁) = 𝐾)
162161eqcomd 2657 . . . 4 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → 𝐾 = (𝐾 mod 𝑁))
163148, 157, 162rspcedvd 3348 . . 3 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))
164163ex 449 . 2 𝐾𝐽 → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
165103, 164pm2.61i 176 1 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wrex 2942  cdif 3604  {csn 4210   class class class wbr 4685  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   < clt 10112  cle 10113  cmin 10304  cn 11058  0cn0 11330  cz 11415  ..^cfzo 12504   mod cmo 12708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709
This theorem is referenced by:  cshimadifsn  13621
  Copyright terms: Public domain W3C validator