MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mod2xnegi Structured version   Visualization version   GIF version

Theorem mod2xnegi 15822
Description: Version of mod2xi 15820 with a negative mod value. (Contributed by Mario Carneiro, 21-Feb-2014.)
Hypotheses
Ref Expression
mod2xnegi.1 𝐴 ∈ ℕ
mod2xnegi.2 𝐵 ∈ ℕ0
mod2xnegi.3 𝐷 ∈ ℤ
mod2xnegi.4 𝐾 ∈ ℕ
mod2xnegi.5 𝑀 ∈ ℕ0
mod2xnegi.6 𝐿 ∈ ℕ0
mod2xnegi.10 ((𝐴𝐵) mod 𝑁) = (𝐿 mod 𝑁)
mod2xnegi.7 (2 · 𝐵) = 𝐸
mod2xnegi.8 (𝐿 + 𝐾) = 𝑁
mod2xnegi.9 ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐾)
Assertion
Ref Expression
mod2xnegi ((𝐴𝐸) mod 𝑁) = (𝑀 mod 𝑁)

Proof of Theorem mod2xnegi
StepHypRef Expression
1 mod2xnegi.8 . . 3 (𝐿 + 𝐾) = 𝑁
2 mod2xnegi.6 . . . 4 𝐿 ∈ ℕ0
3 mod2xnegi.4 . . . 4 𝐾 ∈ ℕ
4 nn0nnaddcl 11362 . . . 4 ((𝐿 ∈ ℕ0𝐾 ∈ ℕ) → (𝐿 + 𝐾) ∈ ℕ)
52, 3, 4mp2an 708 . . 3 (𝐿 + 𝐾) ∈ ℕ
61, 5eqeltrri 2727 . 2 𝑁 ∈ ℕ
7 mod2xnegi.1 . 2 𝐴 ∈ ℕ
8 mod2xnegi.2 . 2 𝐵 ∈ ℕ0
96nnzi 11439 . . . 4 𝑁 ∈ ℤ
10 mod2xnegi.3 . . . 4 𝐷 ∈ ℤ
11 zaddcl 11455 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝑁 + 𝐷) ∈ ℤ)
129, 10, 11mp2an 708 . . 3 (𝑁 + 𝐷) ∈ ℤ
133nnnn0i 11338 . . . . 5 𝐾 ∈ ℕ0
1413, 13nn0addcli 11368 . . . 4 (𝐾 + 𝐾) ∈ ℕ0
1514nn0zi 11440 . . 3 (𝐾 + 𝐾) ∈ ℤ
16 zsubcl 11457 . . 3 (((𝑁 + 𝐷) ∈ ℤ ∧ (𝐾 + 𝐾) ∈ ℤ) → ((𝑁 + 𝐷) − (𝐾 + 𝐾)) ∈ ℤ)
1712, 15, 16mp2an 708 . 2 ((𝑁 + 𝐷) − (𝐾 + 𝐾)) ∈ ℤ
18 mod2xnegi.5 . 2 𝑀 ∈ ℕ0
19 mod2xnegi.10 . 2 ((𝐴𝐵) mod 𝑁) = (𝐿 mod 𝑁)
20 mod2xnegi.7 . 2 (2 · 𝐵) = 𝐸
216nncni 11068 . . . . . 6 𝑁 ∈ ℂ
22 zcn 11420 . . . . . . 7 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
2310, 22ax-mp 5 . . . . . 6 𝐷 ∈ ℂ
2421, 23addcli 10082 . . . . 5 (𝑁 + 𝐷) ∈ ℂ
253nncni 11068 . . . . . 6 𝐾 ∈ ℂ
2625, 25addcli 10082 . . . . 5 (𝐾 + 𝐾) ∈ ℂ
2724, 26, 21subdiri 10518 . . . 4 (((𝑁 + 𝐷) − (𝐾 + 𝐾)) · 𝑁) = (((𝑁 + 𝐷) · 𝑁) − ((𝐾 + 𝐾) · 𝑁))
2827oveq1i 6700 . . 3 ((((𝑁 + 𝐷) − (𝐾 + 𝐾)) · 𝑁) + 𝑀) = ((((𝑁 + 𝐷) · 𝑁) − ((𝐾 + 𝐾) · 𝑁)) + 𝑀)
2924, 21mulcli 10083 . . . 4 ((𝑁 + 𝐷) · 𝑁) ∈ ℂ
3018nn0cni 11342 . . . 4 𝑀 ∈ ℂ
3126, 21mulcli 10083 . . . 4 ((𝐾 + 𝐾) · 𝑁) ∈ ℂ
3229, 30, 31addsubi 10411 . . 3 ((((𝑁 + 𝐷) · 𝑁) + 𝑀) − ((𝐾 + 𝐾) · 𝑁)) = ((((𝑁 + 𝐷) · 𝑁) − ((𝐾 + 𝐾) · 𝑁)) + 𝑀)
33 mod2xnegi.9 . . . . . . 7 ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐾)
3433oveq2i 6701 . . . . . 6 ((𝑁 · 𝑁) + ((𝐷 · 𝑁) + 𝑀)) = ((𝑁 · 𝑁) + (𝐾 · 𝐾))
3521, 25, 25adddii 10088 . . . . . 6 (𝑁 · (𝐾 + 𝐾)) = ((𝑁 · 𝐾) + (𝑁 · 𝐾))
3634, 35oveq12i 6702 . . . . 5 (((𝑁 · 𝑁) + ((𝐷 · 𝑁) + 𝑀)) − (𝑁 · (𝐾 + 𝐾))) = (((𝑁 · 𝑁) + (𝐾 · 𝐾)) − ((𝑁 · 𝐾) + (𝑁 · 𝐾)))
3721, 23, 21adddiri 10089 . . . . . . . 8 ((𝑁 + 𝐷) · 𝑁) = ((𝑁 · 𝑁) + (𝐷 · 𝑁))
3837oveq1i 6700 . . . . . . 7 (((𝑁 + 𝐷) · 𝑁) + 𝑀) = (((𝑁 · 𝑁) + (𝐷 · 𝑁)) + 𝑀)
3921, 21mulcli 10083 . . . . . . . 8 (𝑁 · 𝑁) ∈ ℂ
4023, 21mulcli 10083 . . . . . . . 8 (𝐷 · 𝑁) ∈ ℂ
4139, 40, 30addassi 10086 . . . . . . 7 (((𝑁 · 𝑁) + (𝐷 · 𝑁)) + 𝑀) = ((𝑁 · 𝑁) + ((𝐷 · 𝑁) + 𝑀))
4238, 41eqtr2i 2674 . . . . . 6 ((𝑁 · 𝑁) + ((𝐷 · 𝑁) + 𝑀)) = (((𝑁 + 𝐷) · 𝑁) + 𝑀)
4321, 26mulcomi 10084 . . . . . 6 (𝑁 · (𝐾 + 𝐾)) = ((𝐾 + 𝐾) · 𝑁)
4442, 43oveq12i 6702 . . . . 5 (((𝑁 · 𝑁) + ((𝐷 · 𝑁) + 𝑀)) − (𝑁 · (𝐾 + 𝐾))) = ((((𝑁 + 𝐷) · 𝑁) + 𝑀) − ((𝐾 + 𝐾) · 𝑁))
4536, 44eqtr3i 2675 . . . 4 (((𝑁 · 𝑁) + (𝐾 · 𝐾)) − ((𝑁 · 𝐾) + (𝑁 · 𝐾))) = ((((𝑁 + 𝐷) · 𝑁) + 𝑀) − ((𝐾 + 𝐾) · 𝑁))
46 mulsub 10511 . . . . . 6 (((𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ) ∧ (𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ)) → ((𝑁𝐾) · (𝑁𝐾)) = (((𝑁 · 𝑁) + (𝐾 · 𝐾)) − ((𝑁 · 𝐾) + (𝑁 · 𝐾))))
4721, 25, 21, 25, 46mp4an 709 . . . . 5 ((𝑁𝐾) · (𝑁𝐾)) = (((𝑁 · 𝑁) + (𝐾 · 𝐾)) − ((𝑁 · 𝐾) + (𝑁 · 𝐾)))
482nn0cni 11342 . . . . . . . 8 𝐿 ∈ ℂ
4921, 25, 48subadd2i 10407 . . . . . . 7 ((𝑁𝐾) = 𝐿 ↔ (𝐿 + 𝐾) = 𝑁)
501, 49mpbir 221 . . . . . 6 (𝑁𝐾) = 𝐿
5150, 50oveq12i 6702 . . . . 5 ((𝑁𝐾) · (𝑁𝐾)) = (𝐿 · 𝐿)
5247, 51eqtr3i 2675 . . . 4 (((𝑁 · 𝑁) + (𝐾 · 𝐾)) − ((𝑁 · 𝐾) + (𝑁 · 𝐾))) = (𝐿 · 𝐿)
5345, 52eqtr3i 2675 . . 3 ((((𝑁 + 𝐷) · 𝑁) + 𝑀) − ((𝐾 + 𝐾) · 𝑁)) = (𝐿 · 𝐿)
5428, 32, 533eqtr2i 2679 . 2 ((((𝑁 + 𝐷) − (𝐾 + 𝐾)) · 𝑁) + 𝑀) = (𝐿 · 𝐿)
556, 7, 8, 17, 2, 18, 19, 20, 54mod2xi 15820 1 ((𝐴𝐸) mod 𝑁) = (𝑀 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1523  wcel 2030  (class class class)co 6690  cc 9972   + caddc 9977   · cmul 9979  cmin 10304  cn 11058  2c2 11108  0cn0 11330  cz 11415   mod cmo 12708  cexp 12900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901
This theorem is referenced by:  1259lem4  15888  2503lem2  15892
  Copyright terms: Public domain W3C validator