MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mod2xi Structured version   Visualization version   GIF version

Theorem mod2xi 15979
Description: Double exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.)
Hypotheses
Ref Expression
modxai.1 𝑁 ∈ ℕ
modxai.2 𝐴 ∈ ℕ
modxai.3 𝐵 ∈ ℕ0
modxai.4 𝐷 ∈ ℤ
modxai.5 𝐾 ∈ ℕ0
modxai.6 𝑀 ∈ ℕ0
mod2xi.9 ((𝐴𝐵) mod 𝑁) = (𝐾 mod 𝑁)
mod2xi.7 (2 · 𝐵) = 𝐸
mod2xi.8 ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐾)
Assertion
Ref Expression
mod2xi ((𝐴𝐸) mod 𝑁) = (𝑀 mod 𝑁)

Proof of Theorem mod2xi
StepHypRef Expression
1 modxai.1 . 2 𝑁 ∈ ℕ
2 modxai.2 . 2 𝐴 ∈ ℕ
3 modxai.3 . 2 𝐵 ∈ ℕ0
4 modxai.4 . 2 𝐷 ∈ ℤ
5 modxai.5 . 2 𝐾 ∈ ℕ0
6 modxai.6 . 2 𝑀 ∈ ℕ0
7 mod2xi.9 . 2 ((𝐴𝐵) mod 𝑁) = (𝐾 mod 𝑁)
83nn0cni 11505 . . . 4 𝐵 ∈ ℂ
982timesi 11348 . . 3 (2 · 𝐵) = (𝐵 + 𝐵)
10 mod2xi.7 . . 3 (2 · 𝐵) = 𝐸
119, 10eqtr3i 2794 . 2 (𝐵 + 𝐵) = 𝐸
12 mod2xi.8 . 2 ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐾)
131, 2, 3, 4, 5, 6, 3, 5, 7, 7, 11, 12modxai 15978 1 ((𝐴𝐸) mod 𝑁) = (𝑀 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1630  wcel 2144  (class class class)co 6792   + caddc 10140   · cmul 10142  cn 11221  2c2 11271  0cn0 11493  cz 11578   mod cmo 12875  cexp 13066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-sup 8503  df-inf 8504  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067
This theorem is referenced by:  mod2xnegi  15981  1259lem1  16044  1259lem2  16045  1259lem3  16046  1259lem4  16047  2503lem1  16050  2503lem2  16051  4001lem1  16054  4001lem2  16055  4001lem3  16056
  Copyright terms: Public domain W3C validator