![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > moaneu | Structured version Visualization version GIF version |
Description: Nested "at most one" and uniqueness quantifiers. (Contributed by NM, 25-Jan-2006.) (Proof shortened by Wolf Lammen, 27-Dec-2018.) |
Ref | Expression |
---|---|
moaneu | ⊢ ∃*𝑥(𝜑 ∧ ∃!𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moanmo 2670 | . 2 ⊢ ∃*𝑥(𝜑 ∧ ∃*𝑥𝜑) | |
2 | eumo 2636 | . . . 4 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) | |
3 | 2 | anim2i 594 | . . 3 ⊢ ((𝜑 ∧ ∃!𝑥𝜑) → (𝜑 ∧ ∃*𝑥𝜑)) |
4 | 3 | moimi 2658 | . 2 ⊢ (∃*𝑥(𝜑 ∧ ∃*𝑥𝜑) → ∃*𝑥(𝜑 ∧ ∃!𝑥𝜑)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ ∃*𝑥(𝜑 ∧ ∃!𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 ∃!weu 2607 ∃*wmo 2608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-10 2168 ax-11 2183 ax-12 2196 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-eu 2611 df-mo 2612 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |