MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moabex Structured version   Visualization version   GIF version

Theorem moabex 4957
Description: "At most one" existence implies a class abstraction exists. (Contributed by NM, 30-Dec-1996.)
Assertion
Ref Expression
moabex (∃*𝑥𝜑 → {𝑥𝜑} ∈ V)

Proof of Theorem moabex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mo2v 2505 . 2 (∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 abss 3704 . . . . 5 ({𝑥𝜑} ⊆ {𝑦} ↔ ∀𝑥(𝜑𝑥 ∈ {𝑦}))
3 velsn 4226 . . . . . . 7 (𝑥 ∈ {𝑦} ↔ 𝑥 = 𝑦)
43imbi2i 325 . . . . . 6 ((𝜑𝑥 ∈ {𝑦}) ↔ (𝜑𝑥 = 𝑦))
54albii 1787 . . . . 5 (∀𝑥(𝜑𝑥 ∈ {𝑦}) ↔ ∀𝑥(𝜑𝑥 = 𝑦))
62, 5bitri 264 . . . 4 ({𝑥𝜑} ⊆ {𝑦} ↔ ∀𝑥(𝜑𝑥 = 𝑦))
7 snex 4938 . . . . 5 {𝑦} ∈ V
87ssex 4835 . . . 4 ({𝑥𝜑} ⊆ {𝑦} → {𝑥𝜑} ∈ V)
96, 8sylbir 225 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} ∈ V)
109exlimiv 1898 . 2 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} ∈ V)
111, 10sylbi 207 1 (∃*𝑥𝜑 → {𝑥𝜑} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1521  wex 1744  wcel 2030  ∃*wmo 2499  {cab 2637  Vcvv 3231  wss 3607  {csn 4210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-sn 4211  df-pr 4213
This theorem is referenced by:  rmorabex  4958  euabex  4959
  Copyright terms: Public domain W3C validator