MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moa1 Structured version   Visualization version   GIF version

Theorem moa1 2659
Description: If an implication holds for at most one value, then its consequent holds for at most one value. See also ala1 1890 and exa1 1914. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Wolf Lammen, 22-Dec-2018.) (Revised by BJ, 29-Mar-2021.)
Assertion
Ref Expression
moa1 (∃*𝑥(𝜑𝜓) → ∃*𝑥𝜓)

Proof of Theorem moa1
StepHypRef Expression
1 ax-1 6 . 2 (𝜓 → (𝜑𝜓))
21moimi 2658 1 (∃*𝑥(𝜑𝜓) → ∃*𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  ∃*wmo 2608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-10 2168  ax-12 2196
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ex 1854  df-nf 1859  df-eu 2611  df-mo 2612
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator