![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mo4 | Structured version Visualization version GIF version |
Description: "At most one" expressed using implicit substitution. (Contributed by NM, 26-Jul-1995.) |
Ref | Expression |
---|---|
mo4.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
mo4 | ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1883 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | mo4.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | mo4f 2545 | 1 ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1521 ∃*wmo 2499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 |
This theorem is referenced by: eu4 2547 rmo4 3432 dffun3 5937 fun11 6001 brprcneu 6222 dff13 6552 mpt2fun 6804 caovmo 6913 wemoiso 7195 wemoiso2 7196 addsrmo 9932 mulsrmo 9933 summo 14492 prodmo 14710 hausflimi 21831 vitalilem3 23424 plyexmo 24113 tglineintmo 25582 ajmoi 27842 pjhthmo 28289 adjmo 28819 moel 29451 noprefixmo 31973 funtransport 32263 funray 32372 funline 32374 lineintmo 32389 cossssid4 34360 dffrege115 38589 |
Copyright terms: Public domain | W3C validator |