MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndvrid Structured version   Visualization version   GIF version

Theorem mndvrid 20417
Description: Tuple-wise right identity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mndvcl.b 𝐵 = (Base‘𝑀)
mndvcl.p + = (+g𝑀)
mndvlid.z 0 = (0g𝑀)
Assertion
Ref Expression
mndvrid ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵𝑚 𝐼)) → (𝑋𝑓 + (𝐼 × { 0 })) = 𝑋)

Proof of Theorem mndvrid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elmapex 8034 . . . 4 (𝑋 ∈ (𝐵𝑚 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V))
21simprd 483 . . 3 (𝑋 ∈ (𝐵𝑚 𝐼) → 𝐼 ∈ V)
32adantl 467 . 2 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵𝑚 𝐼)) → 𝐼 ∈ V)
4 elmapi 8035 . . 3 (𝑋 ∈ (𝐵𝑚 𝐼) → 𝑋:𝐼𝐵)
54adantl 467 . 2 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵𝑚 𝐼)) → 𝑋:𝐼𝐵)
6 mndvcl.b . . . 4 𝐵 = (Base‘𝑀)
7 mndvlid.z . . . 4 0 = (0g𝑀)
86, 7mndidcl 17516 . . 3 (𝑀 ∈ Mnd → 0𝐵)
98adantr 466 . 2 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵𝑚 𝐼)) → 0𝐵)
10 mndvcl.p . . . 4 + = (+g𝑀)
116, 10, 7mndrid 17520 . . 3 ((𝑀 ∈ Mnd ∧ 𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
1211adantlr 694 . 2 (((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵𝑚 𝐼)) ∧ 𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
133, 5, 9, 12caofid0r 7077 1 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵𝑚 𝐼)) → (𝑋𝑓 + (𝐼 × { 0 })) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  Vcvv 3351  {csn 4317   × cxp 5248  wf 6026  cfv 6030  (class class class)co 6796  𝑓 cof 7046  𝑚 cmap 8013  Basecbs 16064  +gcplusg 16149  0gc0g 16308  Mndcmnd 17502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-1st 7319  df-2nd 7320  df-map 8015  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator