![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mndomgmid | Structured version Visualization version GIF version |
Description: A monoid is a magma with an identity element. (Contributed by FL, 18-Feb-2010.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mndomgmid | ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndoismgmOLD 34001 | . 2 ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ Magma) | |
2 | mndoisexid 34000 | . 2 ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ ExId ) | |
3 | 1, 2 | elind 3949 | 1 ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2145 ∩ cin 3722 ExId cexid 33975 Magmacmagm 33979 MndOpcmndo 33997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-v 3353 df-in 3730 df-sgrOLD 33992 df-mndo 33998 |
This theorem is referenced by: ismndo2 34005 rngoidmlem 34067 isdrngo2 34089 |
Copyright terms: Public domain | W3C validator |