![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mndmgm | Structured version Visualization version GIF version |
Description: A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.) |
Ref | Expression |
---|---|
mndmgm | ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndsgrp 17507 | . 2 ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ SGrp) | |
2 | sgrpmgm 17497 | . 2 ⊢ (𝑀 ∈ SGrp → 𝑀 ∈ Mgm) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Mgm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2145 Mgmcmgm 17448 SGrpcsgrp 17491 Mndcmnd 17502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-nul 4923 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-iota 5994 df-fv 6039 df-ov 6796 df-sgrp 17492 df-mnd 17503 |
This theorem is referenced by: mndcl 17509 mndplusf 17517 srg1zr 18737 ringmgm 18765 chfacfpmmulgsum2 20890 cayhamlem1 20891 ofldchr 30154 idomrootle 38299 ismhm0 42333 mhmismgmhm 42334 c0mgm 42437 c0snmgmhm 42442 c0snmhm 42443 |
Copyright terms: Public domain | W3C validator |