![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mndlrid | Structured version Visualization version GIF version |
Description: A monoid's identity element is a two-sided identity. (Contributed by NM, 18-Aug-2011.) |
Ref | Expression |
---|---|
mndlrid.b | ⊢ 𝐵 = (Base‘𝐺) |
mndlrid.p | ⊢ + = (+g‘𝐺) |
mndlrid.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
mndlrid | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndlrid.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mndlrid.o | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | mndlrid.p | . 2 ⊢ + = (+g‘𝐺) | |
4 | 1, 3 | mndid 17510 | . 2 ⊢ (𝐺 ∈ Mnd → ∃𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥)) |
5 | 1, 2, 3, 4 | mgmlrid 17473 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ‘cfv 6031 (class class class)co 6792 Basecbs 16063 +gcplusg 16148 0gc0g 16307 Mndcmnd 17501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-riota 6753 df-ov 6795 df-0g 16309 df-mgm 17449 df-sgrp 17491 df-mnd 17502 |
This theorem is referenced by: mndlid 17518 mndrid 17519 gsumvallem2 17579 gsumsubm 17580 srgidmlem 18727 ringidmlem 18777 frlmgsum 20327 |
Copyright terms: Public domain | W3C validator |