![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mndlid | Structured version Visualization version GIF version |
Description: The identity element of a monoid is a left identity. (Contributed by NM, 18-Aug-2011.) |
Ref | Expression |
---|---|
mndlrid.b | ⊢ 𝐵 = (Base‘𝐺) |
mndlrid.p | ⊢ + = (+g‘𝐺) |
mndlrid.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
mndlid | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndlrid.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mndlrid.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | mndlrid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
4 | 1, 2, 3 | mndlrid 17532 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) |
5 | 4 | simpld 477 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ‘cfv 6050 (class class class)co 6815 Basecbs 16080 +gcplusg 16164 0gc0g 16323 Mndcmnd 17516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-iota 6013 df-fun 6052 df-fv 6058 df-riota 6776 df-ov 6818 df-0g 16325 df-mgm 17464 df-sgrp 17506 df-mnd 17517 |
This theorem is referenced by: issubmnd 17540 ress0g 17541 submnd0 17542 prdsidlem 17544 imasmnd 17550 0mhm 17580 mrcmndind 17588 gsumccat 17600 dfgrp2 17669 grplid 17674 dfgrp3 17736 mhmid 17758 mhmmnd 17759 mulgnn0p1 17774 mulgnn0z 17789 mulgnn0dir 17793 cntzsubm 17989 oppgmnd 18005 odmodnn0 18180 lsmub2x 18283 mulgnn0di 18452 gsumval3 18529 gsumzaddlem 18542 gsumzsplit 18548 srgbinomlem4 18764 dsmmacl 20308 mndvlid 20422 dmatmul 20526 mndifsplit 20665 tsmssplit 22177 omndmul2 30043 omndmul3 30044 slmd0vlid 30106 c0mgm 42438 c0mhm 42439 c0snmgmhm 42443 cznrng 42484 mndpsuppss 42681 |
Copyright terms: Public domain | W3C validator |