![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mndidcl | Structured version Visualization version GIF version |
Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
mndidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mndidcl.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
mndidcl | ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndidcl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mndidcl.o | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | eqid 2761 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | 1, 3 | mndid 17525 | . 2 ⊢ (𝐺 ∈ Mnd → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)) |
5 | 1, 2, 3, 4 | mgmidcl 17487 | 1 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2140 ‘cfv 6050 Basecbs 16080 +gcplusg 16164 0gc0g 16323 Mndcmnd 17516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-iota 6013 df-fun 6052 df-fv 6058 df-riota 6776 df-ov 6818 df-0g 16325 df-mgm 17464 df-sgrp 17506 df-mnd 17517 |
This theorem is referenced by: mndpfo 17536 prdsidlem 17544 imasmnd 17550 idmhm 17566 mhmf1o 17567 issubmd 17571 submid 17573 0mhm 17580 mhmco 17584 mhmeql 17586 submacs 17587 mrcmndind 17588 prdspjmhm 17589 pwsdiagmhm 17591 pwsco1mhm 17592 pwsco2mhm 17593 gsumvallem2 17594 dfgrp2 17669 grpidcl 17672 mhmid 17758 mhmmnd 17759 mulgnn0cl 17780 mulgnn0z 17789 cntzsubm 17989 oppgmnd 18005 gex1 18227 mulgnn0di 18452 mulgmhm 18454 subcmn 18463 gsumval3 18529 gsumzcl2 18532 gsumzaddlem 18542 gsumzsplit 18548 gsumzmhm 18558 gsummpt1n0 18585 srgidcl 18739 srg0cl 18740 ringidcl 18789 gsummgp0 18829 pwssplit1 19282 dsmm0cl 20307 dsmmacl 20308 mndvlid 20422 mndvrid 20423 mdet0 20635 mndifsplit 20665 gsummatr01lem3 20686 pmatcollpw3fi1lem1 20814 tmdmulg 22118 tmdgsum 22121 tsms0 22167 tsmssplit 22177 tsmsxp 22180 submomnd 30041 omndmul2 30043 omndmul3 30044 omndmul 30045 ogrpinv0le 30047 slmdbn0 30092 slmdsn0 30095 slmd0vcl 30105 gsumle 30110 sibf0 30727 sitmcl 30744 pwssplit4 38180 c0mgm 42438 c0mhm 42439 c0snmgmhm 42443 c0snmhm 42444 mgpsumz 42670 mndpsuppss 42681 lco0 42745 |
Copyright terms: Public domain | W3C validator |