![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mndcl | Structured version Visualization version GIF version |
Description: Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Proof shortened by AV, 8-Feb-2020.) |
Ref | Expression |
---|---|
mndcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mndcl.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
mndcl | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndmgm 17521 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mgm) | |
2 | mndcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | mndcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | 2, 3 | mgmcl 17466 | . 2 ⊢ ((𝐺 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
5 | 1, 4 | syl3an1 1167 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 +gcplusg 16163 Mgmcmgm 17461 Mndcmnd 17515 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-nul 4941 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-iota 6012 df-fv 6057 df-ov 6817 df-mgm 17463 df-sgrp 17505 df-mnd 17516 |
This theorem is referenced by: mnd4g 17528 mndpropd 17537 issubmnd 17539 prdsplusgcl 17542 imasmnd 17549 idmhm 17565 mhmf1o 17566 issubmd 17570 0mhm 17579 mhmco 17583 mhmeql 17585 submacs 17586 mrcmndind 17587 prdspjmhm 17588 pwsdiagmhm 17590 pwsco1mhm 17591 pwsco2mhm 17592 gsumccat 17599 gsumwmhm 17603 grpcl 17651 mhmmnd 17758 mulgnnclOLD 17778 mulgnn0cl 17779 mulgnndirOLD 17791 cntzsubm 17988 oppgmnd 18004 lsmssv 18278 frgp0 18393 frgpadd 18396 mulgnn0di 18451 mulgmhm 18453 gsumval3eu 18525 gsumval3 18528 gsumzcl2 18531 gsumzaddlem 18541 gsumzmhm 18557 gsummptfzcl 18588 srgcl 18732 srgacl 18744 srgbinomlem 18764 srgbinom 18765 ringcl 18781 ringpropd 18802 mndvcl 20419 mhmvlin 20425 mat2pmatghm 20757 pm2mpghm 20843 cpmadugsumlemF 20903 tsmsadd 22171 omndadd2d 30038 omndadd2rd 30039 slmdacl 30092 slmdvacl 30095 gsumncl 30944 c0mhm 42438 ofaddmndmap 42650 lincsum 42746 |
Copyright terms: Public domain | W3C validator |