![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mndass | Structured version Visualization version GIF version |
Description: A monoid operation is associative. (Contributed by NM, 14-Aug-2011.) (Proof shortened by AV, 8-Feb-2020.) |
Ref | Expression |
---|---|
mndcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mndcl.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
mndass | ⊢ ((𝐺 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndsgrp 17506 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ SGrp) | |
2 | mndcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | mndcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | 2, 3 | sgrpass 17497 | . 2 ⊢ ((𝐺 ∈ SGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
5 | 1, 4 | sylan 561 | 1 ⊢ ((𝐺 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 ‘cfv 6031 (class class class)co 6792 Basecbs 16063 +gcplusg 16148 SGrpcsgrp 17490 Mndcmnd 17501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-nul 4920 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-iota 5994 df-fv 6039 df-ov 6795 df-sgrp 17491 df-mnd 17502 |
This theorem is referenced by: mnd32g 17512 mnd12g 17513 mnd4g 17514 issubmnd 17525 prdsmndd 17530 imasmnd 17535 mrcmndind 17573 gsumccat 17585 grpass 17638 mhmmnd 17744 mulgnndirOLD 17777 cntzsubm 17974 oppgmnd 17990 frgp0 18379 mulgnn0di 18437 gsumval3eu 18511 gsumval3 18514 srgass 18720 ringass 18771 mndvass 20414 chfacfscmulgsum 20884 chfacfpmmulgsum 20888 slmdass 30100 lidlmsgrp 42444 invginvrid 42666 |
Copyright terms: Public domain | W3C validator |