![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mncn0 | Structured version Visualization version GIF version |
Description: A monic polynomial is not zero. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
Ref | Expression |
---|---|
mncn0 | ⊢ (𝑃 ∈ ( Monic ‘𝑆) → 𝑃 ≠ 0𝑝) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnccoe 38179 | . 2 ⊢ (𝑃 ∈ ( Monic ‘𝑆) → ((coeff‘𝑃)‘(deg‘𝑃)) = 1) | |
2 | coe0 24182 | . . . . . . 7 ⊢ (coeff‘0𝑝) = (ℕ0 × {0}) | |
3 | 2 | fveq1i 6341 | . . . . . 6 ⊢ ((coeff‘0𝑝)‘(deg‘0𝑝)) = ((ℕ0 × {0})‘(deg‘0𝑝)) |
4 | dgr0 24188 | . . . . . . . 8 ⊢ (deg‘0𝑝) = 0 | |
5 | 0nn0 11470 | . . . . . . . 8 ⊢ 0 ∈ ℕ0 | |
6 | 4, 5 | eqeltri 2823 | . . . . . . 7 ⊢ (deg‘0𝑝) ∈ ℕ0 |
7 | c0ex 10197 | . . . . . . . 8 ⊢ 0 ∈ V | |
8 | 7 | fvconst2 6621 | . . . . . . 7 ⊢ ((deg‘0𝑝) ∈ ℕ0 → ((ℕ0 × {0})‘(deg‘0𝑝)) = 0) |
9 | 6, 8 | ax-mp 5 | . . . . . 6 ⊢ ((ℕ0 × {0})‘(deg‘0𝑝)) = 0 |
10 | 3, 9 | eqtri 2770 | . . . . 5 ⊢ ((coeff‘0𝑝)‘(deg‘0𝑝)) = 0 |
11 | 0ne1 11251 | . . . . 5 ⊢ 0 ≠ 1 | |
12 | 10, 11 | eqnetri 2990 | . . . 4 ⊢ ((coeff‘0𝑝)‘(deg‘0𝑝)) ≠ 1 |
13 | fveq2 6340 | . . . . . 6 ⊢ (𝑃 = 0𝑝 → (coeff‘𝑃) = (coeff‘0𝑝)) | |
14 | fveq2 6340 | . . . . . 6 ⊢ (𝑃 = 0𝑝 → (deg‘𝑃) = (deg‘0𝑝)) | |
15 | 13, 14 | fveq12d 6346 | . . . . 5 ⊢ (𝑃 = 0𝑝 → ((coeff‘𝑃)‘(deg‘𝑃)) = ((coeff‘0𝑝)‘(deg‘0𝑝))) |
16 | 15 | neeq1d 2979 | . . . 4 ⊢ (𝑃 = 0𝑝 → (((coeff‘𝑃)‘(deg‘𝑃)) ≠ 1 ↔ ((coeff‘0𝑝)‘(deg‘0𝑝)) ≠ 1)) |
17 | 12, 16 | mpbiri 248 | . . 3 ⊢ (𝑃 = 0𝑝 → ((coeff‘𝑃)‘(deg‘𝑃)) ≠ 1) |
18 | 17 | necon2i 2954 | . 2 ⊢ (((coeff‘𝑃)‘(deg‘𝑃)) = 1 → 𝑃 ≠ 0𝑝) |
19 | 1, 18 | syl 17 | 1 ⊢ (𝑃 ∈ ( Monic ‘𝑆) → 𝑃 ≠ 0𝑝) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1620 ∈ wcel 2127 ≠ wne 2920 {csn 4309 × cxp 5252 ‘cfv 6037 0cc0 10099 1c1 10100 ℕ0cn0 11455 0𝑝c0p 23606 coeffccoe 24112 degcdgr 24113 Monic cmnc 38172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-inf2 8699 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 ax-pre-sup 10177 ax-addf 10178 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-fal 1626 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-int 4616 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-se 5214 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-isom 6046 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-of 7050 df-om 7219 df-1st 7321 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7899 df-map 8013 df-pm 8014 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-sup 8501 df-inf 8502 df-oi 8568 df-card 8926 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-div 10848 df-nn 11184 df-2 11242 df-3 11243 df-n0 11456 df-z 11541 df-uz 11851 df-rp 11997 df-fz 12491 df-fzo 12631 df-fl 12758 df-seq 12967 df-exp 13026 df-hash 13283 df-cj 14009 df-re 14010 df-im 14011 df-sqrt 14145 df-abs 14146 df-clim 14389 df-rlim 14390 df-sum 14587 df-0p 23607 df-ply 24114 df-coe 24116 df-dgr 24117 df-mnc 38174 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |