Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnccoe Structured version   Visualization version   GIF version

Theorem mnccoe 38234
 Description: A monic polynomial has leading coefficient 1. (Contributed by Stefan O'Rear, 5-Dec-2014.)
Assertion
Ref Expression
mnccoe (𝑃 ∈ ( Monic ‘𝑆) → ((coeff‘𝑃)‘(deg‘𝑃)) = 1)

Proof of Theorem mnccoe
StepHypRef Expression
1 elmnc 38232 . 2 (𝑃 ∈ ( Monic ‘𝑆) ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1))
21simprbi 484 1 (𝑃 ∈ ( Monic ‘𝑆) → ((coeff‘𝑃)‘(deg‘𝑃)) = 1)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1631   ∈ wcel 2145  ‘cfv 6031  1c1 10139  Polycply 24160  coeffccoe 24162  degcdgr 24163   Monic cmnc 38227 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-cnex 10194 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fv 6039  df-ply 24164  df-mnc 38229 This theorem is referenced by:  mncn0  38235
 Copyright terms: Public domain W3C validator