![]() |
Metamath
Proof Explorer Theorem List (p. 95 of 429) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27903) |
![]() (27904-29428) |
![]() (29429-42879) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | iundomg 9401* | An upper bound for the cardinality of an indexed union, with explicit choice principles. 𝐵 depends on 𝑥 and should be thought of as 𝐵(𝑥). (Contributed by Mario Carneiro, 1-Sep-2015.) |
⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) & ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐶 ↑𝑚 𝐵) ∈ AC 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ≼ 𝐶) & ⊢ (𝜑 → (𝐴 × 𝐶) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × 𝐶)) | ||
Theorem | iundom 9402* | An upper bound for the cardinality of an indexed union. 𝐶 depends on 𝑥 and should be thought of as 𝐶(𝑥). (Contributed by NM, 26-Mar-2006.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ≼ (𝐴 × 𝐵)) | ||
Theorem | unidom 9403* | An upper bound for the cardinality of a union. Theorem 10.47 of [TakeutiZaring] p. 98. (Contributed by NM, 25-Mar-2006.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≼ 𝐵) → ∪ 𝐴 ≼ (𝐴 × 𝐵)) | ||
Theorem | uniimadom 9404* | An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. (Contributed by NM, 25-Mar-2006.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) | ||
Theorem | uniimadomf 9405* | An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. This version of uniimadom 9404 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.) |
⊢ Ⅎ𝑥𝐹 & ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) | ||
Theorem | cardval 9406* | The value of the cardinal number function. Definition 10.4 of [TakeutiZaring] p. 85. See cardval2 8855 for a simpler version of its value. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴} | ||
Theorem | cardid 9407 | Any set is equinumerous to its cardinal number. Proposition 10.5 of [TakeutiZaring] p. 85. (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (card‘𝐴) ≈ 𝐴 | ||
Theorem | cardidg 9408 | Any set is equinumerous to its cardinal number. Closed theorem form of cardid 9407. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝐴 ∈ 𝐵 → (card‘𝐴) ≈ 𝐴) | ||
Theorem | cardidd 9409 | Any set is equinumerous to its cardinal number. Deduction form of cardid 9407. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → (card‘𝐴) ≈ 𝐴) | ||
Theorem | cardf 9410 | The cardinality function is a function with domain the well-orderable sets. Assuming AC, this is the universe. (Contributed by Mario Carneiro, 6-Jun-2013.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ card:V⟶On | ||
Theorem | carden 9411 |
Two sets are equinumerous iff their cardinal numbers are equal. This
important theorem expresses the essential concept behind
"cardinality" or
"size." This theorem appears as Proposition 10.10 of [TakeutiZaring]
p. 85, Theorem 7P of [Enderton] p. 197,
and Theorem 9 of [Suppes] p. 242
(among others). The Axiom of Choice is required for its proof. Related
theorems are hasheni 13176 and the finite-set-only hashen 13175.
This theorem is also known as Hume's Principle. Gottlob Frege's two-volume Grundgesetze der Arithmetik used his Basic Law V to prove this theorem. Unfortunately Basic Law V caused Frege's system to be inconsistent because it was subject to Russell's paradox (see ru 3467). Later scholars have found that Frege primarily used Basic Law V to Hume's Principle. If Basic Law V is replaced by Hume's Principle in Frege's system, much of Frege's work is restored. Grundgesetze der Arithmetik, once Basic Law V is replaced, proves "Frege's theorem" (the Peano axioms of arithmetic can be derived in second-order logic from Hume's principle). See https://plato.stanford.edu/entries/frege-theorem . We take a different approach, using first-order logic and ZFC, to prove the Peano axioms of arithmetic. The theory of cardinality can also be developed without AC by introducing "card" as a primitive notion and stating this theorem as an axiom, as is done with the axiom for cardinal numbers in [Suppes] p. 111. Finally, if we allow the Axiom of Regularity, we can avoid AC by defining the cardinal number of a set as the set of all sets equinumerous to it and having the least possible rank (see karden 8796). (Contributed by NM, 22-Oct-2003.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴 ≈ 𝐵)) | ||
Theorem | cardeq0 9412 | Only the empty set has cardinality zero. (Contributed by NM, 23-Apr-2004.) |
⊢ (𝐴 ∈ 𝑉 → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅)) | ||
Theorem | unsnen 9413 | Equinumerosity of a set with a new element added. (Contributed by NM, 7-Nov-2008.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (¬ 𝐵 ∈ 𝐴 → (𝐴 ∪ {𝐵}) ≈ suc (card‘𝐴)) | ||
Theorem | carddom 9414 | Two sets have the dominance relationship iff their cardinalities have the subset relationship. Equation i of [Quine] p. 232. (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴 ≼ 𝐵)) | ||
Theorem | cardsdom 9415 | Two sets have the strict dominance relationship iff their cardinalities have the membership relationship. Corollary 19.7(2) of [Eisenberg] p. 310. (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴 ≺ 𝐵)) | ||
Theorem | domtri 9416 | Trichotomy law for dominance and strict dominance. This theorem is equivalent to the Axiom of Choice. (Contributed by NM, 4-Jan-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) | ||
Theorem | entric 9417 | Trichotomy of equinumerosity and strict dominance. This theorem is equivalent to the Axiom of Choice. Theorem 8 of [Suppes] p. 242. (Contributed by NM, 4-Jan-2004.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵 ∨ 𝐵 ≺ 𝐴)) | ||
Theorem | entri2 9418 | Trichotomy of dominance and strict dominance. (Contributed by NM, 4-Jan-2004.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≼ 𝐵 ∨ 𝐵 ≺ 𝐴)) | ||
Theorem | entri3 9419 | Trichotomy of dominance. This theorem is equivalent to the Axiom of Choice. Part of Proposition 4.42(d) of [Mendelson] p. 275. (Contributed by NM, 4-Jan-2004.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≼ 𝐵 ∨ 𝐵 ≼ 𝐴)) | ||
Theorem | sdomsdomcard 9420 | A set strictly dominates iff its cardinal strictly dominates. (Contributed by NM, 30-Oct-2003.) |
⊢ (𝐴 ≺ 𝐵 ↔ 𝐴 ≺ (card‘𝐵)) | ||
Theorem | canth3 9421 | Cantor's theorem in terms of cardinals. This theorem tells us that no matter how large a cardinal number is, there is a still larger cardinal number. Theorem 18.12 of [Monk1] p. 133. (Contributed by NM, 5-Nov-2003.) |
⊢ (𝐴 ∈ 𝑉 → (card‘𝐴) ∈ (card‘𝒫 𝐴)) | ||
Theorem | infxpidm 9422 | The Cartesian product of an infinite set with itself is idempotent. This theorem (which is an AC equivalent) provides the basis for infinite cardinal arithmetic. Proposition 10.40 of [TakeutiZaring] p. 95. This proof follows as a corollary of infxpen 8875. (Contributed by NM, 17-Sep-2004.) (Revised by Mario Carneiro, 9-Mar-2013.) |
⊢ (ω ≼ 𝐴 → (𝐴 × 𝐴) ≈ 𝐴) | ||
Theorem | ondomon 9423* | The collection of ordinal numbers dominated by a set is an ordinal number. (In general, not all collections of ordinal numbers are ordinal.) Theorem 56 of [Suppes] p. 227. This theorem can be proved (with a longer proof) without the Axiom of Choice; see hartogs 8490. (Contributed by NM, 7-Nov-2003.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ On) | ||
Theorem | cardmin 9424* | The smallest ordinal that strictly dominates a set is a cardinal. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 20-Sep-2014.) |
⊢ (𝐴 ∈ 𝑉 → (card‘∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) | ||
Theorem | ficard 9425 | A set is finite iff its cardinal is a natural number. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ (card‘𝐴) ∈ ω)) | ||
Theorem | infinf 9426 | Equivalence between two infiniteness criteria for sets. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ Fin ↔ ω ≼ 𝐴)) | ||
Theorem | unirnfdomd 9427 | The union of the range of a function from an infinite set into the class of finite sets is dominated by its domain. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐹:𝑇⟶Fin) & ⊢ (𝜑 → ¬ 𝑇 ∈ Fin) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∪ ran 𝐹 ≼ 𝑇) | ||
Theorem | konigthlem 9428* | Lemma for konigth 9429. (Contributed by Mario Carneiro, 22-Feb-2013.) |
⊢ 𝐴 ∈ V & ⊢ 𝑆 = ∪ 𝑖 ∈ 𝐴 (𝑀‘𝑖) & ⊢ 𝑃 = X𝑖 ∈ 𝐴 (𝑁‘𝑖) & ⊢ 𝐷 = (𝑖 ∈ 𝐴 ↦ (𝑎 ∈ (𝑀‘𝑖) ↦ ((𝑓‘𝑎)‘𝑖))) & ⊢ 𝐸 = (𝑖 ∈ 𝐴 ↦ (𝑒‘𝑖)) ⇒ ⊢ (∀𝑖 ∈ 𝐴 (𝑀‘𝑖) ≺ (𝑁‘𝑖) → 𝑆 ≺ 𝑃) | ||
Theorem | konigth 9429* | Konig's Theorem. If 𝑚(𝑖) ≺ 𝑛(𝑖) for all 𝑖 ∈ 𝐴, then Σ𝑖 ∈ 𝐴𝑚(𝑖) ≺ ∏𝑖 ∈ 𝐴𝑛(𝑖), where the sums and products stand in for disjoint union and infinite cartesian product. The version here is proven with regular unions rather than disjoint unions for convenience, but the version with disjoint unions is clearly a special case of this version. The Axiom of Choice is needed for this proof, but it contains AC as a simple corollary (letting 𝑚(𝑖) = ∅, this theorem says that an infinite cartesian product of nonempty sets is nonempty), so this is an AC equivalent. Theorem 11.26 of [TakeutiZaring] p. 107. (Contributed by Mario Carneiro, 22-Feb-2013.) |
⊢ 𝐴 ∈ V & ⊢ 𝑆 = ∪ 𝑖 ∈ 𝐴 (𝑀‘𝑖) & ⊢ 𝑃 = X𝑖 ∈ 𝐴 (𝑁‘𝑖) ⇒ ⊢ (∀𝑖 ∈ 𝐴 (𝑀‘𝑖) ≺ (𝑁‘𝑖) → 𝑆 ≺ 𝑃) | ||
Theorem | alephsucpw 9430 | The power set of an aleph dominates the successor aleph. (The Generalized Continuum Hypothesis says they are equinumerous, see gch3 9536 or gchaleph2 9532.) (Contributed by NM, 27-Aug-2005.) |
⊢ (ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) | ||
Theorem | aleph1 9431 | The set exponentiation of 2 to the aleph-zero has cardinality of at least aleph-one. (If we were to assume the Continuum Hypothesis, their cardinalities would be the same.) (Contributed by NM, 7-Jul-2004.) |
⊢ (ℵ‘1𝑜) ≼ (2𝑜 ↑𝑚 (ℵ‘∅)) | ||
Theorem | alephval2 9432* | An alternate way to express the value of the aleph function for nonzero arguments. Theorem 64 of [Suppes] p. 229. (Contributed by NM, 15-Nov-2003.) |
⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (ℵ‘𝐴) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 (ℵ‘𝑦) ≺ 𝑥}) | ||
Theorem | dominfac 9433 | A nonempty set that is a subset of its union is infinite. This version is proved from ax-ac 9319. See dominf 9305 for a version proved from ax-cc 9295. (Contributed by NM, 25-Mar-2007.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ ∪ 𝐴) → ω ≼ 𝐴) | ||
Theorem | iunctb 9434* | The countable union of countable sets is countable (indexed union version of unictb 9435). (Contributed by Mario Carneiro, 18-Jan-2014.) |
⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ω) | ||
Theorem | unictb 9435* | The countable union of countable sets is countable. Theorem 6Q of [Enderton] p. 159. See iunctb 9434 for indexed union version. (Contributed by NM, 26-Mar-2006.) |
⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝑥 ≼ ω) → ∪ 𝐴 ≼ ω) | ||
Theorem | infmap 9436* | An exponentiation law for infinite cardinals. Similar to Lemma 6.2 of [Jech] p. 43. (Contributed by NM, 1-Oct-2004.) (Proof shortened by Mario Carneiro, 30-Apr-2015.) |
⊢ ((ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ↑𝑚 𝐵) ≈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)}) | ||
Theorem | alephadd 9437 | The sum of two alephs is their maximum. Equation 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ ((ℵ‘𝐴) +𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)) | ||
Theorem | alephmul 9438 | The product of two alephs is their maximum. Equation 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) × (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))) | ||
Theorem | alephexp1 9439 | An exponentiation law for alephs. Lemma 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ((ℵ‘𝐴) ↑𝑚 (ℵ‘𝐵)) ≈ (2𝑜 ↑𝑚 (ℵ‘𝐵))) | ||
Theorem | alephsuc3 9440* | An alternate representation of a successor aleph. Compare alephsuc 8929 and alephsuc2 8941. Equality can be obtained by taking the card of the right-hand side then using alephcard 8931 and carden 9411. (Contributed by NM, 23-Oct-2004.) |
⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) ≈ {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)}) | ||
Theorem | alephexp2 9441* | An expression equinumerous to 2 to an aleph power. The proof equates the two laws for cardinal exponentiation alephexp1 9439 (which works if the base is less than or equal to the exponent) and infmap 9436 (which works if the exponent is less than or equal to the base). They can be equated only when the base is equal to the exponent, and this is the result. (Contributed by NM, 23-Oct-2004.) |
⊢ (𝐴 ∈ On → (2𝑜 ↑𝑚 (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))}) | ||
Theorem | alephreg 9442 | A successor aleph is regular. Theorem 11.15 of [TakeutiZaring] p. 103. (Contributed by Mario Carneiro, 9-Mar-2013.) |
⊢ (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴) | ||
Theorem | pwcfsdom 9443* | A corollary of Konig's Theorem konigth 9429. Theorem 11.28 of [TakeutiZaring] p. 108. (Contributed by Mario Carneiro, 20-Mar-2013.) |
⊢ 𝐻 = (𝑦 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓‘𝑦))) ⇒ ⊢ (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑𝑚 (cf‘(ℵ‘𝐴))) | ||
Theorem | cfpwsdom 9444 | A corollary of Konig's Theorem konigth 9429. Theorem 11.29 of [TakeutiZaring] p. 108. (Contributed by Mario Carneiro, 20-Mar-2013.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (2𝑜 ≼ 𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵 ↑𝑚 (ℵ‘𝐴))))) | ||
Theorem | alephom 9445 | From canth2 8154, we know that (ℵ‘0) < (2↑ω), but we cannot prove that (2↑ω) = (ℵ‘1) (this is the Continuum Hypothesis), nor can we prove that it is less than any bound whatsoever (i.e. the statement (ℵ‘𝐴) < (2↑ω) is consistent for any ordinal 𝐴). However, we can prove that (2↑ω) is not equal to (ℵ‘ω), nor (ℵ‘(ℵ‘ω)), on cofinality grounds, because by Konig's Theorem konigth 9429 (in the form of cfpwsdom 9444), (2↑ω) has uncountable cofinality, which eliminates limit alephs like (ℵ‘ω). (The first limit aleph that is not eliminated is (ℵ‘(ℵ‘1)), which has cofinality (ℵ‘1).) (Contributed by Mario Carneiro, 21-Mar-2013.) |
⊢ (card‘(2𝑜 ↑𝑚 ω)) ≠ (ℵ‘ω) | ||
Theorem | smobeth 9446 | The beth function is strictly monotone. This function is not strictly the beth function, but rather bethA is the same as (card‘(𝑅1‘(ω +𝑜 𝐴))), since conventionally we start counting at the first infinite level, and ignore the finite levels. (Contributed by Mario Carneiro, 6-Jun-2013.) (Revised by Mario Carneiro, 2-Jun-2015.) |
⊢ Smo (card ∘ 𝑅1) | ||
Theorem | nd1 9447 | A lemma for proving conditionless ZFC axioms. (Contributed by NM, 1-Jan-2002.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦 ∈ 𝑧) | ||
Theorem | nd2 9448 | A lemma for proving conditionless ZFC axioms. (Contributed by NM, 1-Jan-2002.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑧 ∈ 𝑦) | ||
Theorem | nd3 9449 | A lemma for proving conditionless ZFC axioms. (Contributed by NM, 2-Jan-2002.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑥 ∈ 𝑦) | ||
Theorem | nd4 9450 | A lemma for proving conditionless ZFC axioms. (Contributed by NM, 2-Jan-2002.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑦 ∈ 𝑥) | ||
Theorem | axextnd 9451 | A version of the Axiom of Extensionality with no distinct variable conditions. (Contributed by NM, 14-Aug-2003.) |
⊢ ∃𝑥((𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧) | ||
Theorem | axrepndlem1 9452* | Lemma for the Axiom of Replacement with no distinct variable conditions. (Contributed by NM, 2-Jan-2002.) |
⊢ (¬ ∀𝑦 𝑦 = 𝑧 → ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) | ||
Theorem | axrepndlem2 9453 | Lemma for the Axiom of Replacement with no distinct variable conditions. (Contributed by NM, 2-Jan-2002.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) |
⊢ (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) | ||
Theorem | axrepnd 9454 | A version of the Axiom of Replacement with no distinct variable conditions. (Contributed by NM, 2-Jan-2002.) |
⊢ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) | ||
Theorem | axunndlem1 9455* | Lemma for the Axiom of Union with no distinct variable conditions. (Contributed by NM, 2-Jan-2002.) |
⊢ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | ||
Theorem | axunnd 9456 | A version of the Axiom of Union with no distinct variable conditions. (Contributed by NM, 2-Jan-2002.) |
⊢ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | ||
Theorem | axpowndlem1 9457 | Lemma for the Axiom of Power Sets with no distinct variable conditions. (Contributed by NM, 4-Jan-2002.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (¬ 𝑥 = 𝑦 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥))) | ||
Theorem | axpowndlem2 9458* | Lemma for the Axiom of Power Sets with no distinct variable conditions. Revised to remove a redundant antecedent from the consequence. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) (Revised and shortened by Wolf Lammen, 9-Jun-2019.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥))) | ||
Theorem | axpowndlem3 9459* | Lemma for the Axiom of Power Sets with no distinct variable conditions. (Contributed by NM, 4-Jan-2002.) (Revised by Mario Carneiro, 10-Dec-2016.) (Proof shortened by Wolf Lammen, 10-Jun-2019.) |
⊢ (¬ 𝑥 = 𝑦 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) | ||
Theorem | axpowndlem4 9460 | Lemma for the Axiom of Power Sets with no distinct variable conditions. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Mario Carneiro, 10-Dec-2016.) |
⊢ (¬ ∀𝑦 𝑦 = 𝑥 → (¬ ∀𝑦 𝑦 = 𝑧 → (¬ 𝑥 = 𝑦 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)))) | ||
Theorem | axpownd 9461 | A version of the Axiom of Power Sets with no distinct variable conditions. (Contributed by NM, 4-Jan-2002.) |
⊢ (¬ 𝑥 = 𝑦 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) | ||
Theorem | axregndlem1 9462 | Lemma for the Axiom of Regularity with no distinct variable conditions. (Contributed by NM, 3-Jan-2002.) |
⊢ (∀𝑥 𝑥 = 𝑧 → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) | ||
Theorem | axregndlem2 9463* | Lemma for the Axiom of Regularity with no distinct variable conditions. (Contributed by NM, 3-Jan-2002.) (Proof shortened by Mario Carneiro, 10-Dec-2016.) |
⊢ (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) | ||
Theorem | axregnd 9464 | A version of the Axiom of Regularity with no distinct variable conditions. (Contributed by NM, 3-Jan-2002.) (Proof shortened by Wolf Lammen, 18-Aug-2019.) |
⊢ (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) | ||
Theorem | axinfndlem1 9465* | Lemma for the Axiom of Infinity with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 5-Jan-2002.) |
⊢ (∀𝑥 𝑦 ∈ 𝑧 → ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)))) | ||
Theorem | axinfnd 9466 | A version of the Axiom of Infinity with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 5-Jan-2002.) |
⊢ ∃𝑥(𝑦 ∈ 𝑧 → (𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)))) | ||
Theorem | axacndlem1 9467 | Lemma for the Axiom of Choice with no distinct variable conditions. (Contributed by NM, 3-Jan-2002.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) | ||
Theorem | axacndlem2 9468 | Lemma for the Axiom of Choice with no distinct variable conditions. (Contributed by NM, 3-Jan-2002.) |
⊢ (∀𝑥 𝑥 = 𝑧 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) | ||
Theorem | axacndlem3 9469 | Lemma for the Axiom of Choice with no distinct variable conditions. (Contributed by NM, 3-Jan-2002.) |
⊢ (∀𝑦 𝑦 = 𝑧 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) | ||
Theorem | axacndlem4 9470* | Lemma for the Axiom of Choice with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 8-Jan-2002.) (Proof shortened by Mario Carneiro, 10-Dec-2016.) |
⊢ ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) | ||
Theorem | axacndlem5 9471* | Lemma for the Axiom of Choice with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 3-Jan-2002.) (Proof shortened by Mario Carneiro, 10-Dec-2016.) |
⊢ ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) | ||
Theorem | axacnd 9472 | A version of the Axiom of Choice with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 3-Jan-2002.) (Proof shortened by Mario Carneiro, 10-Dec-2016.) |
⊢ ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) | ||
Theorem | zfcndext 9473* | Axiom of Extensionality ax-ext 2631, reproved from conditionless ZFC version and predicate calculus. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) |
⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) | ||
Theorem | zfcndrep 9474* | Axiom of Replacement ax-rep 4804, reproved from conditionless ZFC axioms. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) |
⊢ (∀𝑤∃𝑦∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑))) | ||
Theorem | zfcndun 9475* | Axiom of Union ax-un 6991, reproved from conditionless ZFC axioms. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) |
⊢ ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | ||
Theorem | zfcndpow 9476* | Axiom of Power Sets ax-pow 4873, reproved from conditionless ZFC axioms. The proof uses the "Axiom of Twoness," dtru 4887. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) |
⊢ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | ||
Theorem | zfcndreg 9477* | Axiom of Regularity ax-reg 8538, reproved from conditionless ZFC axioms. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) |
⊢ (∃𝑦 𝑦 ∈ 𝑥 → ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) | ||
Theorem | zfcndinf 9478* | Axiom of Infinity ax-inf 8573, reproved from conditionless ZFC axioms. Since we have already reproved Extensionality, Replacement, and Power Sets above, we are justified in referencing theorem el 4877 in the proof. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by NM, 15-Aug-2003.) |
⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦))) | ||
Theorem | zfcndac 9479* | Axiom of Choice ax-ac 9319, reproved from conditionless ZFC axioms. (Contributed by NM, 15-Aug-2003.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣)) | ||
Syntax | cgch 9480 | Extend class notation to include the collection of sets that satisfy the GCH. |
class GCH | ||
Definition | df-gch 9481* | Define the collection of "GCH-sets", or sets for which the generalized continuum hypothesis holds. In this language the generalized continuum hypothesis can be expressed as GCH = V. A set 𝑥 satisfies the generalized continuum hypothesis if it is finite or there is no set 𝑦 strictly between 𝑥 and its powerset in cardinality. The continuum hypothesis is equivalent to ω ∈ GCH. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ GCH = (Fin ∪ {𝑥 ∣ ∀𝑦 ¬ (𝑥 ≺ 𝑦 ∧ 𝑦 ≺ 𝒫 𝑥)}) | ||
Theorem | elgch 9482* | Elementhood in the collection of GCH-sets. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) | ||
Theorem | fingch 9483 | A finite set is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ Fin ⊆ GCH | ||
Theorem | gchi 9484 | The only GCH-sets which have other sets between it and its power set are finite sets. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ ((𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin) | ||
Theorem | gchen1 9485 | If 𝐴 ≤ 𝐵 < 𝒫 𝐴, and 𝐴 is an infinite GCH-set, then 𝐴 = 𝐵 in cardinality. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴)) → 𝐴 ≈ 𝐵) | ||
Theorem | gchen2 9486 | If 𝐴 < 𝐵 ≤ 𝒫 𝐴, and 𝐴 is an infinite GCH-set, then 𝐵 = 𝒫 𝐴 in cardinality. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → 𝐵 ≈ 𝒫 𝐴) | ||
Theorem | gchor 9487 | If 𝐴 ≤ 𝐵 ≤ 𝒫 𝐴, and 𝐴 is an infinite GCH-set, then either 𝐴 = 𝐵 or 𝐵 = 𝒫 𝐴 in cardinality. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → (𝐴 ≈ 𝐵 ∨ 𝐵 ≈ 𝒫 𝐴)) | ||
Theorem | engch 9488 | The property of being a GCH-set is a cardinal invariant. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ GCH ↔ 𝐵 ∈ GCH)) | ||
Theorem | gchdomtri 9489 | Under certain conditions, a GCH-set can demonstrate trichotomy of dominance. Lemma for gchac 9541. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ ((𝐴 ∈ GCH ∧ (𝐴 +𝑐 𝐴) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴) → (𝐴 ≼ 𝐵 ∨ 𝐵 ≼ 𝐴)) | ||
Theorem | fpwwe2cbv 9490* | Lemma for fpwwe2 9503. (Contributed by Mario Carneiro, 3-Jun-2015.) |
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} ⇒ ⊢ 𝑊 = {〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))} | ||
Theorem | fpwwe2lem1 9491* | Lemma for fpwwe2 9503. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} ⇒ ⊢ 𝑊 ⊆ (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴)) | ||
Theorem | fpwwe2lem2 9492* | Lemma for fpwwe2 9503. (Contributed by Mario Carneiro, 19-May-2015.) |
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ V) ⇒ ⊢ (𝜑 → (𝑋𝑊𝑅 ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))) | ||
Theorem | fpwwe2lem3 9493* | Lemma for fpwwe2 9503. (Contributed by Mario Carneiro, 19-May-2015.) |
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝑋𝑊𝑅) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑋) → ((◡𝑅 “ {𝐵})𝐹(𝑅 ∩ ((◡𝑅 “ {𝐵}) × (◡𝑅 “ {𝐵})))) = 𝐵) | ||
Theorem | fpwwe2lem5 9494* | Lemma for fpwwe2 9503. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) ⇒ ⊢ ((𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → (𝑋𝐹𝑅) ∈ 𝐴) | ||
Theorem | fpwwe2lem6 9495* | Lemma for fpwwe2 9503. (Contributed by Mario Carneiro, 18-May-2015.) |
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) & ⊢ (𝜑 → 𝑋𝑊𝑅) & ⊢ (𝜑 → 𝑌𝑊𝑆) & ⊢ 𝑀 = OrdIso(𝑅, 𝑋) & ⊢ 𝑁 = OrdIso(𝑆, 𝑌) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑀) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑁) & ⊢ (𝜑 → (𝑀 ↾ 𝐵) = (𝑁 ↾ 𝐵)) ⇒ ⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (𝐶 ∈ 𝑋 ∧ 𝐶 ∈ 𝑌 ∧ (◡𝑀‘𝐶) = (◡𝑁‘𝐶))) | ||
Theorem | fpwwe2lem7 9496* | Lemma for fpwwe2 9503. (Contributed by Mario Carneiro, 18-May-2015.) |
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) & ⊢ (𝜑 → 𝑋𝑊𝑅) & ⊢ (𝜑 → 𝑌𝑊𝑆) & ⊢ 𝑀 = OrdIso(𝑅, 𝑋) & ⊢ 𝑁 = OrdIso(𝑆, 𝑌) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑀) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑁) & ⊢ (𝜑 → (𝑀 ↾ 𝐵) = (𝑁 ↾ 𝐵)) ⇒ ⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (𝐶𝑆(𝑁‘𝐵) ∧ (𝐷𝑅(𝑀‘𝐵) → (𝐶𝑅𝐷 ↔ 𝐶𝑆𝐷)))) | ||
Theorem | fpwwe2lem8 9497* | Lemma for fpwwe2 9503. Show by induction that the two isometries 𝑀 and 𝑁 agree on their common domain. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) & ⊢ (𝜑 → 𝑋𝑊𝑅) & ⊢ (𝜑 → 𝑌𝑊𝑆) & ⊢ 𝑀 = OrdIso(𝑅, 𝑋) & ⊢ 𝑁 = OrdIso(𝑆, 𝑌) & ⊢ (𝜑 → dom 𝑀 ⊆ dom 𝑁) ⇒ ⊢ (𝜑 → 𝑀 = (𝑁 ↾ dom 𝑀)) | ||
Theorem | fpwwe2lem9 9498* | Lemma for fpwwe2 9503. Given two well-orders 〈𝑋, 𝑅〉 and 〈𝑌, 𝑆〉 of parts of 𝐴, one is an initial segment of the other. (The 𝑂 ⊆ 𝑃 hypothesis is in order to break the symmetry of 𝑋 and 𝑌.) (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) & ⊢ (𝜑 → 𝑋𝑊𝑅) & ⊢ (𝜑 → 𝑌𝑊𝑆) & ⊢ 𝑀 = OrdIso(𝑅, 𝑋) & ⊢ 𝑁 = OrdIso(𝑆, 𝑌) & ⊢ (𝜑 → dom 𝑀 ⊆ dom 𝑁) ⇒ ⊢ (𝜑 → (𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋)))) | ||
Theorem | fpwwe2lem10 9499* | Lemma for fpwwe2 9503. Given two well-orders 〈𝑋, 𝑅〉 and 〈𝑌, 𝑆〉 of parts of 𝐴, one is an initial segment of the other. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) & ⊢ (𝜑 → 𝑋𝑊𝑅) & ⊢ (𝜑 → 𝑌𝑊𝑆) ⇒ ⊢ (𝜑 → ((𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋))) ∨ (𝑌 ⊆ 𝑋 ∧ 𝑆 = (𝑅 ∩ (𝑋 × 𝑌))))) | ||
Theorem | fpwwe2lem11 9500* | Lemma for fpwwe2 9503. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) & ⊢ 𝑋 = ∪ dom 𝑊 ⇒ ⊢ (𝜑 → 𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |