HomeHome Metamath Proof Explorer
Theorem List (p. 79 of 429)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27903)
  Hilbert Space Explorer  Hilbert Space Explorer
(27904-29428)
  Users' Mathboxes  Users' Mathboxes
(29429-42879)
 

Theorem List for Metamath Proof Explorer - 7801-7900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremersymb 7801 An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝑋)       (𝜑 → (𝐴𝑅𝐵𝐵𝑅𝐴))
 
Theoremertr 7802 An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝑋)       (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
 
Theoremertrd 7803 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐴𝑅𝐵)    &   (𝜑𝐵𝑅𝐶)       (𝜑𝐴𝑅𝐶)
 
Theoremertr2d 7804 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐴𝑅𝐵)    &   (𝜑𝐵𝑅𝐶)       (𝜑𝐶𝑅𝐴)
 
Theoremertr3d 7805 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐵𝑅𝐴)    &   (𝜑𝐵𝑅𝐶)       (𝜑𝐴𝑅𝐶)
 
Theoremertr4d 7806 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐴𝑅𝐵)    &   (𝜑𝐶𝑅𝐵)       (𝜑𝐴𝑅𝐶)
 
Theoremerref 7807 An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐴𝑋)       (𝜑𝐴𝑅𝐴)
 
Theoremercnv 7808 The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015.)
(𝑅 Er 𝐴𝑅 = 𝑅)
 
Theoremerrn 7809 The range and domain of an equivalence relation are equal. (Contributed by Rodolfo Medina, 11-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝑅 Er 𝐴 → ran 𝑅 = 𝐴)
 
Theoremerssxp 7810 An equivalence relation is a subset of the cartesian product of the field. (Contributed by Mario Carneiro, 12-Aug-2015.)
(𝑅 Er 𝐴𝑅 ⊆ (𝐴 × 𝐴))
 
Theoremerex 7811 An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.)
(𝑅 Er 𝐴 → (𝐴𝑉𝑅 ∈ V))
 
Theoremerexb 7812 An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝑅 Er 𝐴 → (𝑅 ∈ V ↔ 𝐴 ∈ V))
 
Theoremiserd 7813* A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑 → Rel 𝑅)    &   ((𝜑𝑥𝑅𝑦) → 𝑦𝑅𝑥)    &   ((𝜑 ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)) → 𝑥𝑅𝑧)    &   (𝜑 → (𝑥𝐴𝑥𝑅𝑥))       (𝜑𝑅 Er 𝐴)
 
Theoremiseri 7814* A reflexive, symmetric, transitive relation is an equivalence relation on its domain. Inference version of iserd 7813, which avoids the need to provide a "dummy antecedent" 𝜑 if there is no natural one to choose. (Contributed by AV, 30-Apr-2021.)
Rel 𝑅    &   (𝑥𝑅𝑦𝑦𝑅𝑥)    &   ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)    &   (𝑥𝐴𝑥𝑅𝑥)       𝑅 Er 𝐴
 
TheoremiseriALT 7815* Alternate proof of iseri 7814, avoiding the usage of trud 1533 and as antecedent by using ax-mp 5 and one of the hypotheses as antecedent. This results, however, in a slightly longer proof. (Contributed by AV, 30-Apr-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Rel 𝑅    &   (𝑥𝑅𝑦𝑦𝑅𝑥)    &   ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)    &   (𝑥𝐴𝑥𝑅𝑥)       𝑅 Er 𝐴
 
Theorembrdifun 7816 Evaluate the incomparability relation. (Contributed by Mario Carneiro, 9-Jul-2014.)
𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))       ((𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
 
Theoremswoer 7817* Incomparability under a strict weak partial order is an equivalence relation. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))    &   ((𝜑 ∧ (𝑦𝑋𝑧𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦))    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))       (𝜑𝑅 Er 𝑋)
 
Theoremswoord1 7818* The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.)
𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))    &   ((𝜑 ∧ (𝑦𝑋𝑧𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦))    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))    &   (𝜑𝐵𝑋)    &   (𝜑𝐶𝑋)    &   (𝜑𝐴𝑅𝐵)       (𝜑 → (𝐴 < 𝐶𝐵 < 𝐶))
 
Theoremswoord2 7819* The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.)
𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))    &   ((𝜑 ∧ (𝑦𝑋𝑧𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦))    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))    &   (𝜑𝐵𝑋)    &   (𝜑𝐶𝑋)    &   (𝜑𝐴𝑅𝐵)       (𝜑 → (𝐶 < 𝐴𝐶 < 𝐵))
 
Theoremswoso 7820* If the incomparability relation is equivalent to equality in a subset, then the partial order strictly orders the subset. (Contributed by Mario Carneiro, 30-Dec-2014.)
𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))    &   ((𝜑 ∧ (𝑦𝑋𝑧𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦))    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))    &   (𝜑𝑌𝑋)    &   ((𝜑 ∧ (𝑥𝑌𝑦𝑌𝑥𝑅𝑦)) → 𝑥 = 𝑦)       (𝜑< Or 𝑌)
 
Theoremeqerlem 7821* Lemma for eqer 7822. (Contributed by NM, 17-Mar-2008.) (Proof shortened by Mario Carneiro, 6-Dec-2016.)
(𝑥 = 𝑦𝐴 = 𝐵)    &   𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝐴 = 𝐵}       (𝑧𝑅𝑤𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
 
Theoremeqer 7822* Equivalence relation involving equality of dependent classes 𝐴(𝑥) and 𝐵(𝑦). (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.) (Proof shortened by AV, 1-May-2021.)
(𝑥 = 𝑦𝐴 = 𝐵)    &   𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝐴 = 𝐵}       𝑅 Er V
 
Theoremider 7823 The identity relation is an equivalence relation. (Contributed by NM, 10-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 9-Jul-2014.)
I Er V
 
Theorem0er 7824 The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.) (Proof shortened by AV, 1-May-2021.)
∅ Er ∅
 
Theoremeceq1 7825 Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
(𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶)
 
Theoremeceq1d 7826 Equality theorem for equivalence class (deduction form). (Contributed by Jim Kingdon, 31-Dec-2019.)
(𝜑𝐴 = 𝐵)       (𝜑 → [𝐴]𝐶 = [𝐵]𝐶)
 
Theoremeceq2 7827 Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
(𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵)
 
Theoremelecg 7828 Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by Mario Carneiro, 9-Jul-2014.)
((𝐴𝑉𝐵𝑊) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
 
Theoremelec 7829 Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴)
 
Theoremrelelec 7830 Membership in an equivalence class when 𝑅 is a relation. (Contributed by Mario Carneiro, 11-Sep-2015.)
(Rel 𝑅 → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
 
Theoremecss 7831 An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝑋)       (𝜑 → [𝐴]𝑅𝑋)
 
Theoremecdmn0 7832 A representative of a nonempty equivalence class belongs to the domain of the equivalence relation. (Contributed by NM, 15-Feb-1996.) (Revised by Mario Carneiro, 9-Jul-2014.)
(𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅)
 
Theoremereldm 7833 Equality of equivalence classes implies equivalence of domain membership. (Contributed by NM, 28-Jan-1996.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝑋)    &   (𝜑 → [𝐴]𝑅 = [𝐵]𝑅)       (𝜑 → (𝐴𝑋𝐵𝑋))
 
Theoremerth 7834 Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐴𝑋)       (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅))
 
Theoremerth2 7835 Basic property of equivalence relations. Compare Theorem 73 of [Suppes] p. 82. Assumes membership of the second argument in the domain. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐵𝑋)       (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅))
 
Theoremerthi 7836 Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐴𝑅𝐵)       (𝜑 → [𝐴]𝑅 = [𝐵]𝑅)
 
Theoremerdisj 7837 Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of [Suppes] p. 83. (Contributed by NM, 15-Jun-2004.) (Revised by Mario Carneiro, 9-Jul-2014.)
(𝑅 Er 𝑋 → ([𝐴]𝑅 = [𝐵]𝑅 ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))
 
Theoremecidsn 7838 An equivalence class modulo the identity relation is a singleton. (Contributed by NM, 24-Oct-2004.)
[𝐴] I = {𝐴}
 
Theoremqseq1 7839 Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
(𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶))
 
Theoremqseq2 7840 Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
(𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵))
 
Theoremelqsg 7841* Closed form of elqs 7842. (Contributed by Rodolfo Medina, 12-Oct-2010.)
(𝐵𝑉 → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅))
 
Theoremelqs 7842* Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
𝐵 ∈ V       (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅)
 
Theoremelqsi 7843* Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
(𝐵 ∈ (𝐴 / 𝑅) → ∃𝑥𝐴 𝐵 = [𝑥]𝑅)
 
Theoremelqsecl 7844* Membership in a quotient set by an equivalence class according to . (Contributed by Alexander van der Vekens, 12-Apr-2018.) (Revised by AV, 30-Apr-2021.)
(𝐵𝑋 → (𝐵 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝐵 = {𝑦𝑥 𝑦}))
 
Theoremecelqsg 7845 Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.)
((𝑅𝑉𝐵𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅))
 
Theoremecelqsi 7846 Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
𝑅 ∈ V       (𝐵𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅))
 
Theoremecopqsi 7847 "Closure" law for equivalence class of ordered pairs. (Contributed by NM, 25-Mar-1996.)
𝑅 ∈ V    &   𝑆 = ((𝐴 × 𝐴) / 𝑅)       ((𝐵𝐴𝐶𝐴) → [⟨𝐵, 𝐶⟩]𝑅𝑆)
 
Theoremqsexg 7848 A quotient set exists. (Contributed by FL, 19-May-2007.) (Revised by Mario Carneiro, 9-Jul-2014.)
(𝐴𝑉 → (𝐴 / 𝑅) ∈ V)
 
Theoremqsex 7849 A quotient set exists. (Contributed by NM, 14-Aug-1995.)
𝐴 ∈ V       (𝐴 / 𝑅) ∈ V
 
Theoremuniqs 7850 The union of a quotient set. (Contributed by NM, 9-Dec-2008.)
(𝑅𝑉 (𝐴 / 𝑅) = (𝑅𝐴))
 
Theoremqsss 7851 A quotient set is a set of subsets of the base set. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝐴)       (𝜑 → (𝐴 / 𝑅) ⊆ 𝒫 𝐴)
 
Theoremuniqs2 7852 The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.)
(𝜑𝑅 Er 𝐴)    &   (𝜑𝑅𝑉)       (𝜑 (𝐴 / 𝑅) = 𝐴)
 
Theoremsnec 7853 The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.)
𝐴 ∈ V       {[𝐴]𝑅} = ({𝐴} / 𝑅)
 
Theoremecqs 7854 Equivalence class in terms of quotient set. (Contributed by NM, 29-Jan-1999.)
𝑅 ∈ V       [𝐴]𝑅 = ({𝐴} / 𝑅)
 
Theoremecid 7855 A set is equal to its converse epsilon coset. (Note: converse epsilon is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
𝐴 ∈ V       [𝐴] E = 𝐴
 
Theoremqsid 7856 A set is equal to its quotient set mod converse epsilon. (Note: converse epsilon is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
(𝐴 / E ) = 𝐴
 
Theoremectocld 7857* Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014.)
𝑆 = (𝐵 / 𝑅)    &   ([𝑥]𝑅 = 𝐴 → (𝜑𝜓))    &   ((𝜒𝑥𝐵) → 𝜑)       ((𝜒𝐴𝑆) → 𝜓)
 
Theoremectocl 7858* Implicit substitution of class for equivalence class. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
𝑆 = (𝐵 / 𝑅)    &   ([𝑥]𝑅 = 𝐴 → (𝜑𝜓))    &   (𝑥𝐵𝜑)       (𝐴𝑆𝜓)
 
Theoremelqsn0 7859 A quotient set doesn't contain the empty set. (Contributed by NM, 24-Aug-1995.)
((dom 𝑅 = 𝐴𝐵 ∈ (𝐴 / 𝑅)) → 𝐵 ≠ ∅)
 
Theoremecelqsdm 7860 Membership of an equivalence class in a quotient set. (Contributed by NM, 30-Jul-1995.)
((dom 𝑅 = 𝐴 ∧ [𝐵]𝑅 ∈ (𝐴 / 𝑅)) → 𝐵𝐴)
 
Theoremxpider 7861 A square Cartesian product is an equivalence relation (in general it's not a poset). (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝐴 × 𝐴) Er 𝐴
 
Theoremiiner 7862* The intersection of a nonempty family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → 𝑥𝐴 𝑅 Er 𝐵)
 
Theoremriiner 7863* The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
(∀𝑥𝐴 𝑅 Er 𝐵 → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
 
Theoremerinxp 7864 A restricted equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 10-Jul-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝐴)    &   (𝜑𝐵𝐴)       (𝜑 → (𝑅 ∩ (𝐵 × 𝐵)) Er 𝐵)
 
Theoremecinxp 7865 Restrict the relation in an equivalence class to a base set. (Contributed by Mario Carneiro, 10-Jul-2015.)
(((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → [𝐵]𝑅 = [𝐵](𝑅 ∩ (𝐴 × 𝐴)))
 
Theoremqsinxp 7866 Restrict the equivalence relation in a quotient set to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
((𝑅𝐴) ⊆ 𝐴 → (𝐴 / 𝑅) = (𝐴 / (𝑅 ∩ (𝐴 × 𝐴))))
 
Theoremqsdisj 7867 Members of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010.) (Revised by Mario Carneiro, 11-Jul-2014.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐵 ∈ (𝐴 / 𝑅))    &   (𝜑𝐶 ∈ (𝐴 / 𝑅))       (𝜑 → (𝐵 = 𝐶 ∨ (𝐵𝐶) = ∅))
 
Theoremqsdisj2 7868* A quotient set is a disjoint set. (Contributed by Mario Carneiro, 10-Dec-2016.)
(𝑅 Er 𝑋Disj 𝑥 ∈ (𝐴 / 𝑅)𝑥)
 
Theoremqsel 7869 If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.)
((𝑅 Er 𝑋𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶𝐵) → 𝐵 = [𝐶]𝑅)
 
Theoremuniinqs 7870 Class union distributes over the intersection of two subclasses of a quotient space. Compare uniin 4489. (Contributed by FL, 25-May-2007.) (Proof shortened by Mario Carneiro, 11-Jul-2014.)
𝑅 Er 𝑋       ((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) → (𝐵𝐶) = ( 𝐵 𝐶))
 
Theoremqliftlem 7871* 𝐹, a function lift, is a subset of 𝑅 × 𝑆. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)       ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
 
Theoremqliftrel 7872* 𝐹, a function lift, is a subset of 𝑅 × 𝑆. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)       (𝜑𝐹 ⊆ ((𝑋 / 𝑅) × 𝑌))
 
Theoremqliftel 7873* Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)       (𝜑 → ([𝐶]𝑅𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶𝑅𝑥𝐷 = 𝐴)))
 
Theoremqliftel1 7874* Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)       ((𝜑𝑥𝑋) → [𝑥]𝑅𝐹𝐴)
 
Theoremqliftfun 7875* The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)    &   (𝑥 = 𝑦𝐴 = 𝐵)       (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝐴 = 𝐵)))
 
Theoremqliftfund 7876* The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)    &   (𝑥 = 𝑦𝐴 = 𝐵)    &   ((𝜑𝑥𝑅𝑦) → 𝐴 = 𝐵)       (𝜑 → Fun 𝐹)
 
Theoremqliftfuns 7877* The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)       (𝜑 → (Fun 𝐹 ↔ ∀𝑦𝑧(𝑦𝑅𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)))
 
Theoremqliftf 7878* The domain and range of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)       (𝜑 → (Fun 𝐹𝐹:(𝑋 / 𝑅)⟶𝑌))
 
Theoremqliftval 7879* The value of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)    &   (𝑥 = 𝐶𝐴 = 𝐵)    &   (𝜑 → Fun 𝐹)       ((𝜑𝐶𝑋) → (𝐹‘[𝐶]𝑅) = 𝐵)
 
Theoremecoptocl 7880* Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995.)
𝑆 = ((𝐵 × 𝐶) / 𝑅)    &   ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑𝜓))    &   ((𝑥𝐵𝑦𝐶) → 𝜑)       (𝐴𝑆𝜓)
 
Theorem2ecoptocl 7881* Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 23-Jul-1995.)
𝑆 = ((𝐶 × 𝐷) / 𝑅)    &   ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑𝜓))    &   ([⟨𝑧, 𝑤⟩]𝑅 = 𝐵 → (𝜓𝜒))    &   (((𝑥𝐶𝑦𝐷) ∧ (𝑧𝐶𝑤𝐷)) → 𝜑)       ((𝐴𝑆𝐵𝑆) → 𝜒)
 
Theorem3ecoptocl 7882* Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 9-Aug-1995.)
𝑆 = ((𝐷 × 𝐷) / 𝑅)    &   ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑𝜓))    &   ([⟨𝑧, 𝑤⟩]𝑅 = 𝐵 → (𝜓𝜒))    &   ([⟨𝑣, 𝑢⟩]𝑅 = 𝐶 → (𝜒𝜃))    &   (((𝑥𝐷𝑦𝐷) ∧ (𝑧𝐷𝑤𝐷) ∧ (𝑣𝐷𝑢𝐷)) → 𝜑)       ((𝐴𝑆𝐵𝑆𝐶𝑆) → 𝜃)
 
Theorembrecop 7883* Binary relation on a quotient set. Lemma for real number construction. (Contributed by NM, 29-Jan-1996.)
∈ V    &    Er (𝐺 × 𝐺)    &   𝐻 = ((𝐺 × 𝐺) / )    &    = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] 𝑦 = [⟨𝑣, 𝑢⟩] ) ∧ 𝜑))}    &   ((((𝑧𝐺𝑤𝐺) ∧ (𝐴𝐺𝐵𝐺)) ∧ ((𝑣𝐺𝑢𝐺) ∧ (𝐶𝐺𝐷𝐺))) → (([⟨𝑧, 𝑤⟩] = [⟨𝐴, 𝐵⟩] ∧ [⟨𝑣, 𝑢⟩] = [⟨𝐶, 𝐷⟩] ) → (𝜑𝜓)))       (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → ([⟨𝐴, 𝐵⟩] [⟨𝐶, 𝐷⟩] 𝜓))
 
Theorembrecop2 7884 Binary relation on a quotient set. Lemma for real number construction. Eliminates antecedent from last hypothesis. (Contributed by NM, 13-Feb-1996.)
∈ V    &   dom = (𝐺 × 𝐺)    &   𝐻 = ((𝐺 × 𝐺) / )    &   𝑅 ⊆ (𝐻 × 𝐻)    &    ⊆ (𝐺 × 𝐺)    &    ¬ ∅ ∈ 𝐺    &   dom + = (𝐺 × 𝐺)    &   (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → ([⟨𝐴, 𝐵⟩] 𝑅[⟨𝐶, 𝐷⟩] ↔ (𝐴 + 𝐷) (𝐵 + 𝐶)))       ([⟨𝐴, 𝐵⟩] 𝑅[⟨𝐶, 𝐷⟩] ↔ (𝐴 + 𝐷) (𝐵 + 𝐶))
 
Theoremeroveu 7885* Lemma for erov 7887 and eroprf 7888. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.)
𝐽 = (𝐴 / 𝑅)    &   𝐾 = (𝐵 / 𝑆)    &   (𝜑𝑇𝑍)    &   (𝜑𝑅 Er 𝑈)    &   (𝜑𝑆 Er 𝑉)    &   (𝜑𝑇 Er 𝑊)    &   (𝜑𝐴𝑈)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑊)    &   (𝜑+ :(𝐴 × 𝐵)⟶𝐶)    &   ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐵𝑢𝐵))) → ((𝑟𝑅𝑠𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢)))       ((𝜑 ∧ (𝑋𝐽𝑌𝐾)) → ∃!𝑧𝑝𝐴𝑞𝐵 ((𝑋 = [𝑝]𝑅𝑌 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))
 
Theoremerovlem 7886* Lemma for erov 7887 and eroprf 7888. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
𝐽 = (𝐴 / 𝑅)    &   𝐾 = (𝐵 / 𝑆)    &   (𝜑𝑇𝑍)    &   (𝜑𝑅 Er 𝑈)    &   (𝜑𝑆 Er 𝑉)    &   (𝜑𝑇 Er 𝑊)    &   (𝜑𝐴𝑈)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑊)    &   (𝜑+ :(𝐴 × 𝐵)⟶𝐶)    &   ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐵𝑢𝐵))) → ((𝑟𝑅𝑠𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢)))    &    = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}       (𝜑 = (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
 
Theoremerov 7887* The value of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
𝐽 = (𝐴 / 𝑅)    &   𝐾 = (𝐵 / 𝑆)    &   (𝜑𝑇𝑍)    &   (𝜑𝑅 Er 𝑈)    &   (𝜑𝑆 Er 𝑉)    &   (𝜑𝑇 Er 𝑊)    &   (𝜑𝐴𝑈)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑊)    &   (𝜑+ :(𝐴 × 𝐵)⟶𝐶)    &   ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐵𝑢𝐵))) → ((𝑟𝑅𝑠𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢)))    &    = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}    &   (𝜑𝑅𝑋)    &   (𝜑𝑆𝑌)       ((𝜑𝑃𝐴𝑄𝐵) → ([𝑃]𝑅 [𝑄]𝑆) = [(𝑃 + 𝑄)]𝑇)
 
Theoremeroprf 7888* Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
𝐽 = (𝐴 / 𝑅)    &   𝐾 = (𝐵 / 𝑆)    &   (𝜑𝑇𝑍)    &   (𝜑𝑅 Er 𝑈)    &   (𝜑𝑆 Er 𝑉)    &   (𝜑𝑇 Er 𝑊)    &   (𝜑𝐴𝑈)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑊)    &   (𝜑+ :(𝐴 × 𝐵)⟶𝐶)    &   ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐵𝑢𝐵))) → ((𝑟𝑅𝑠𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢)))    &    = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}    &   (𝜑𝑅𝑋)    &   (𝜑𝑆𝑌)    &   𝐿 = (𝐶 / 𝑇)       (𝜑 :(𝐽 × 𝐾)⟶𝐿)
 
Theoremerov2 7889* The value of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐽 = (𝐴 / )    &    = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐴 ((𝑥 = [𝑝] 𝑦 = [𝑞] ) ∧ 𝑧 = [(𝑝 + 𝑞)] )}    &   (𝜑𝑋)    &   (𝜑 Er 𝑈)    &   (𝜑𝐴𝑈)    &   (𝜑+ :(𝐴 × 𝐴)⟶𝐴)    &   ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐴𝑢𝐴))) → ((𝑟 𝑠𝑡 𝑢) → (𝑟 + 𝑡) (𝑠 + 𝑢)))       ((𝜑𝑃𝐴𝑄𝐴) → ([𝑃] [𝑄] ) = [(𝑃 + 𝑄)] )
 
Theoremeroprf2 7890* Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐽 = (𝐴 / )    &    = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐴 ((𝑥 = [𝑝] 𝑦 = [𝑞] ) ∧ 𝑧 = [(𝑝 + 𝑞)] )}    &   (𝜑𝑋)    &   (𝜑 Er 𝑈)    &   (𝜑𝐴𝑈)    &   (𝜑+ :(𝐴 × 𝐴)⟶𝐴)    &   ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐴𝑢𝐴))) → ((𝑟 𝑠𝑡 𝑢) → (𝑟 + 𝑡) (𝑠 + 𝑢)))       (𝜑 :(𝐽 × 𝐽)⟶𝐽)
 
Theoremecopoveq 7891* This is the first of several theorems about equivalence relations of the kind used in construction of fractions and signed reals, involving operations on equivalent classes of ordered pairs. This theorem expresses the relation (specified by the hypothesis) in terms of its operation 𝐹. (Contributed by NM, 16-Aug-1995.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}       (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨𝐴, 𝐵𝐶, 𝐷⟩ ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶)))
 
Theoremecopovsym 7892* Assuming the operation 𝐹 is commutative, show that the relation , specified by the first hypothesis, is symmetric. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 26-Apr-2015.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}    &   (𝑥 + 𝑦) = (𝑦 + 𝑥)       (𝐴 𝐵𝐵 𝐴)
 
Theoremecopovtrn 7893* Assuming that operation 𝐹 is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation , specified by the first hypothesis, is transitive. (Contributed by NM, 11-Feb-1996.) (Revised by Mario Carneiro, 26-Apr-2015.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}    &   (𝑥 + 𝑦) = (𝑦 + 𝑥)    &   ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))    &   ((𝑥𝑆𝑦𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))       ((𝐴 𝐵𝐵 𝐶) → 𝐴 𝐶)
 
Theoremecopover 7894* Assuming that operation 𝐹 is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation , specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) (Proof shortened by AV, 1-May-2021.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}    &   (𝑥 + 𝑦) = (𝑦 + 𝑥)    &   ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))    &   ((𝑥𝑆𝑦𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))        Er (𝑆 × 𝑆)
 
Theoremeceqoveq 7895* Equality of equivalence relation in terms of an operation. (Contributed by NM, 15-Feb-1996.) (Proof shortened by Mario Carneiro, 12-Aug-2015.)
Er (𝑆 × 𝑆)    &   dom + = (𝑆 × 𝑆)    &    ¬ ∅ ∈ 𝑆    &   ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)    &   (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨𝐴, 𝐵𝐶, 𝐷⟩ ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶)))       ((𝐴𝑆𝐶𝑆) → ([⟨𝐴, 𝐵⟩] = [⟨𝐶, 𝐷⟩] ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶)))
 
Theoremecovcom 7896* Lemma used to transfer a commutative law via an equivalence relation. (Contributed by NM, 29-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
𝐶 = ((𝑆 × 𝑆) / )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = [⟨𝐷, 𝐺⟩] )    &   (((𝑧𝑆𝑤𝑆) ∧ (𝑥𝑆𝑦𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ) = [⟨𝐻, 𝐽⟩] )    &   𝐷 = 𝐻    &   𝐺 = 𝐽       ((𝐴𝐶𝐵𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
 
Theoremecovass 7897* Lemma used to transfer an associative law via an equivalence relation. (Contributed by NM, 31-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
𝐷 = ((𝑆 × 𝑆) / )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = [⟨𝐺, 𝐻⟩] )    &   (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] ) = [⟨𝑁, 𝑄⟩] )    &   (((𝐺𝑆𝐻𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝐺, 𝐻⟩] + [⟨𝑣, 𝑢⟩] ) = [⟨𝐽, 𝐾⟩] )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑁𝑆𝑄𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑁, 𝑄⟩] ) = [⟨𝐿, 𝑀⟩] )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → (𝐺𝑆𝐻𝑆))    &   (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (𝑁𝑆𝑄𝑆))    &   𝐽 = 𝐿    &   𝐾 = 𝑀       ((𝐴𝐷𝐵𝐷𝐶𝐷) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
 
Theoremecovdi 7898* Lemma used to transfer a distributive law via an equivalence relation. (Contributed by NM, 2-Sep-1995.) (Revised by David Abernethy, 4-Jun-2013.)
𝐷 = ((𝑆 × 𝑆) / )    &   (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] ) = [⟨𝑀, 𝑁⟩] )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑀𝑆𝑁𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑀, 𝑁⟩] ) = [⟨𝐻, 𝐽⟩] )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) = [⟨𝑊, 𝑋⟩] )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] ) = [⟨𝑌, 𝑍⟩] )    &   (((𝑊𝑆𝑋𝑆) ∧ (𝑌𝑆𝑍𝑆)) → ([⟨𝑊, 𝑋⟩] + [⟨𝑌, 𝑍⟩] ) = [⟨𝐾, 𝐿⟩] )    &   (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (𝑀𝑆𝑁𝑆))    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → (𝑊𝑆𝑋𝑆))    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (𝑌𝑆𝑍𝑆))    &   𝐻 = 𝐾    &   𝐽 = 𝐿       ((𝐴𝐷𝐵𝐷𝐶𝐷) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
 
2.4.21  The mapping operation
 
Syntaxcmap 7899 Extend the definition of a class to include the mapping operation. (Read for 𝐴𝑚 𝐵, "the set of all functions that map from 𝐵 to 𝐴.)
class 𝑚
 
Syntaxcpm 7900 Extend the definition of a class to include the partial mapping operation. (Read for 𝐴pm 𝐵, "the set of all partial functions that map from 𝐵 to 𝐴.)
class pm
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42879
  Copyright terms: Public domain < Previous  Next >